The Journal of the Korea institute of electronic communication sciences
/
v.17
no.5
/
pp.791-800
/
2022
CCN, which has emerged to overcome the limitations of existing network structures, enables efficient networking by changing the IP Address-based network method to the Content-based network method. At this time, the contents are stored on each node(router) rather than on the top server, and considering the limitation of storage capacity, it is very important to determine which contents to store and release through the cache policy, and there are several cache policies that have been studied so far. In this paper, two of the existing cache policies, producer popularity-based and distance-based, were mixed. In addition, the mixing ratio was set differently to experiment, and we proved which experiement was the most efficient one.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.6
/
pp.1113-1120
/
2021
Content Central Network (CCN) appeared to improve network efficiency by transforming IP-based network into content name-based network structures. Each router performs caching mechanism to improve network efficiency in the CCN. And the cache replacement policy applied to the CCN router is an important factor that determines the overall performance of the CCN. Therefore various studies has been done relating to cache replacement policy of the CCN. In this paper, we proposed a cache replacement policy that improves the limitations of the LFU policy. The proposal algorithm applies real-time producer popularity-based variables. And through experiments, we proved that the proposed policy shows a better cache hit ratio than existing policies.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1095-1102
/
2023
Content Centric Network (CCN) is a network that emerged to improve the existing network structure and communicates based on content names instead of addresses. It utilises caches to distribute traffic and reduce response time by delivering content from intermediate nodes. In this paper, we propose a popularity-based caching policy to efficiently utilise the limited CS space in CCN environment. The performance of CCNs can vary significantly depending on which content is prioritised to be stored and released. To achieve the most efficient cache replacement, we propose a real-time content popularity-based efficient cache replacement policy that calculates and prioritises content popularity based on constructor popularity, constructor distance, and content hits, and demonstrate the effectiveness of the new policy through experiments.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.36-39
/
2020
최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 복잡한 특징을 담고 있는 얼굴 이미지에 대해 이를 적용하려는 시도가 늘어나고 있다. 특히, 이미지로부터 주요한 특징들을 추출하여 간결하게 이미지를 대표할 수 있는 이미지 기술자 (Image descriptor)를 딥 러닝을 통해 생성하는 연구가 인기를 끌고 있다. 이는 딥 러닝 끝 단에 있는 Fully-connected layer 의 출력으로 얻을 수 있으며 이미지의 의미론적 상관관계를 이용하여 학습된다. 구체적으로, 이미지 기술자는 실수형 벡터 데이터로서, 한 장의 이미지를 수치화 하여 비슷한 이미지 사이에는 벡터 거리가 가깝게, 서로 다른 이미지 사이에는 벡터 거리가 멀게 구성된다. 본 연구에서는 미리 학습된 인공 신경망을 통과시켜 얻은 얼굴 이미지 기술자를 활용하여 멤버 분류를 위한 두 개의 인공 신경망을 학습하는 것을 목표로 한다. 제안된 방법을 검증하기 위해 얼굴 인식에 널리 사용되는 벤치 마크 데이터셋을 활용하였고, 그 결과 제안된 방법이 높은 정확도로 멤버를 분류할 수 있다는 것을 확인하였다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2007.11a
/
pp.440-447
/
2007
사진은 시각화되어 있으면서도 사용자가 생성하기 쉽다는 이유로 가장 인기 있는 컨텐트 중 하나이며, 사진을 찍은 위치 정보는 해당 장소가 갖는 특징 혹은 상징성으로, 상품 및 서비스와 연관성을 갖고 있기 때문에 상거래의 매개체가 될 가능성을 내포하고 있다. 그러나 현재의 상거래 환경에서는 사진의 위치정보를 자동화, 체계화하여 저장하고 활용하는데 한계를 가지고 있어서 사진 자체가 상거래에 활용되는 모델을 찾아보기 힘들다. 본 연구에서 제시하는 U-Photo 비즈니스 모델은 사용자가 찍은 사진의 배경에 해당하는 장소를 그 장소를 통해 광고를 하고자 하는 광고주와 연계하고, 그 사진을 클릭했을 때 광고주의 사이트가 로딩 되도록 하는, 컨텐트 생성자, 컨텐트 소비자, 광고주 연계 비즈니스 모델이다. 본 논문은 유비쿼터스 컴퓨팅 환경에서 사진을 활용한 비즈니스 모델을 제안하고, 본 비즈니스 모델이 어떤 함의를 지니고 있는지를 분석하며 시장에서 실제 작동할 조건을 예측하여 본 비즈니스 모델을 평가한다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.9
no.6
/
pp.526-533
/
2016
The researches protecting user's location in location-based services(LBS) have received much attention. Especially k-anonymity is the most popular privacy preservation method. k-anonymization means that it selects k-1 other dummies or clients to make the cloaking region. This reduced the probability of the query issuer's location being exposed to untrusted parties to 1/k. But query's location may expose to adversary when k-1 dummies are concentrated in query's location or there is dummy in where query can not exist. Therefore, we proposed the dummy system model and algorithm taking the real environment into account to protect user's location privacy. And we proved the efficiency of our method in terms of experiment result.
Twitter is a social network service that generates about 140 million contents a day. Contents of Twitter contain a variety of information and many researchers research those in various fields. In this research, we propose a method for evaluating the importance of content based on characteristics of Twitter. We have found that number of follower means user's popularity and Re-tweet that means the popularity of content. We perform experiments about proposed method using real Twitter data for proving effectiveness of proposed method. Also, we found information providers in Twitter are public user who represent a company or a representative of a specific group.
The purpose of this study was to explore five-year-old popular child's behavior patterns through participant observation and to analyze the collected data with qualitative method. One popular child was selected from D child care center of P city in Kyeonggi province. Peer-nomination method was used to select the popular child. Participant observation was conducted from April to November in 2017 through 36 observations in free choice activities. As well as observation records, formal and informal interview records with parents and teachers, parent counseling journals, observation journals, and child's personal records were used to understand the popular child. Three steps, including recording, coding, and making themes, were conducted to analyze the data. The main results of the research were as follows: The behavior patterns of popular child in this study presented both positive and negative sides. The positive behavior patterns included consideration, responsibility, high concentration, and a sense of humor. The negative behavior patterns showed control and exclusion. This study has implications for development of educational program and environment to enhance positive peer relationship.
Journal of The Korean Association of Information Education
/
v.26
no.3
/
pp.197-207
/
2022
In this paper, we develop a machine learning based block code generation and recommendation model for the purpose of reducing cognitive load of learners during coding education that learns the learner's block that has been made in the block programming environment using natural processing model and fine-tuning and then generates and recommends the selectable blocks for the next step. To develop the model, the training dataset was produced by pre-processing 50 block codes that were on the popular block programming language web site 'Entry'. Also, after dividing the pre-processed blocks into training dataset, verification dataset and test dataset, we developed a model that generates block codes based on LSTM, Seq2Seq, and GPT-2 model. In the results of the performance evaluation of the developed model, GPT-2 showed a higher performance than the LSTM and Seq2Seq model in the BLEU and ROUGE scores which measure sentence similarity. The data results generated through the GPT-2 model, show that the performance was relatively similar in the BLEU and ROUGE scores except for the case where the number of blocks was 1 or 17.
Recently, social network sites are very popular with the enhancement of mobile device function and distribution. This gives rise to the registrations of the people on the social network sites and the usage of services on the social sites is also getting active. However, social network sites' venders do not provide services enough compared to the demand of users' to share contents from diverse roots by users effectively. In addition, the personal information can be revealed improperly in processes sharing policies and it is obvious that it raises a privacy invasion problem when users access the contents created from diverse devices according to the relationship by policies. However, the existing methods for the integration management of social network are weak to solve this problem. Thus, we propose a model to preserve user privacy, categorize contents efficiently, and give the access control permissions at the same time. In this paper, we encrypt policies and the trusted third party classifies the encrypted policies when the social network sites share the generated contents by users. In addition, the proposed model uses the RCBAC model to manage the contents generated by various devices and measures the similarity between relationships after encrypting when the user policies are shared. So, this paper can contribute to preserve user policies and contents from malicious attackers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.