DOI QR코드

DOI QR Code

An Evaluation Method for Contents Importance Based on Twitter Characteristics

트위터 특징에 기반한 콘텐츠 중요성 평가 기법

  • 이의종 (고려대학교 컴퓨터전파통신공학) ;
  • 김정동 (고려대학교 컴퓨터전파통신공학) ;
  • 백두권 (고려대학교 융합소프트웨어 전문대학원)
  • Received : 2014.02.20
  • Accepted : 2014.10.02
  • Published : 2014.12.15

Abstract

Twitter is a social network service that generates about 140 million contents a day. Contents of Twitter contain a variety of information and many researchers research those in various fields. In this research, we propose a method for evaluating the importance of content based on characteristics of Twitter. We have found that number of follower means user's popularity and Re-tweet that means the popularity of content. We perform experiments about proposed method using real Twitter data for proving effectiveness of proposed method. Also, we found information providers in Twitter are public user who represent a company or a representative of a specific group.

트위터는 하루 약 1억 4000만개의 콘텐츠를 생성하는 소셜 네트워크 서비스로 다양한 데이터를 포함하고 있으며 이를 분석하기 위한 연구가 다방면에서 진행 중에 있다. 본 연구는 트위터의 콘텐츠 검색 분야에서 유용하게 사용될 수 있는 콘텐츠 중요성을 평가하기 위한 연구이다. 트위터 콘텐츠의 중요성이란 단일 콘텐츠가 트위터 서비스 사용자들에게 사실관계가 명확한 정보를 전달하고 있는지를 평가하는 요소를 말한다. 본 논문은 트위터 콘텐츠의 중요성 평가를 위해 콘텐츠 작성자의 청자 수인 팔로워와 콘텐츠의 인기도라고 할 수 있는 리트윗을 사용했다. 더불어 실제 트위터 데이터를 사용해 제안한 방법이 효과적으로 콘텐츠의 영향력을 측정할 수 있음을 보였다. 또한 정보를 전달하는 정보 전달자의 분류를 통해 공공성을 띈 사용자의 분류가 작성한 콘텐츠가 트위터 영향력 측정에 유용하게 사용될 수 있음을 트위터 데이터 분석을 통해 보여주었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Twitter. (2011. March 14). #numbers [Online]. Available: https://blog.twitter.com/2011/numbers, 2011 (downloaded 2014. Dec. 4)
  2. M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, "Measuring User Influence in Twitter: The Million Follower Fallacy," ICWSM, pp. 10-17, 2010.
  3. H. Kwak, C. Lee, H. Park, and S. Moon, "What is Twitter, a social network or a news media?," Proc. of the 19th international conference on World wide web, pp. 591-600, 2010.
  4. J. Weng, E. P. Lim, J. Jiang, and Q. He, "Twitterrank: finding topic-sensitive influential twitterers," Proc. of the third ACM international conference on Web search and data mining, pp. 261-270, 2010.
  5. Teevan, Jaime, Daniel Ramage, Merredith Ringel Morris, "# TwitterSearch: a comparison of microblog search and web search," Proc. of the fourth ACM international conference on Web search and data mining, pp. 25-44, 2011.
  6. Horowitz, Damon, Sepandar D. Kamvar, "The anatomy of a large-scale social search engine," Proc. of the 19th international conference on World wide web. pp. 431-440, 2010.
  7. D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har'El, I. Ronen, and S. Chernov, "Personalized social search based on the user's social network," Proc. of the 18th ACM conference on Information and knowledge management, pp. 1227-1236, 2009.
  8. Golovchinsky, Gene, and Miles Efron, "Making sense of twitter search," 2010.
  9. M. Oussalah, F. Bhat, K. Challis, and T. Schnier, "A software architecture for Twitter collection, search and geolocation services," Knowledge-Based Systems, Vol. 37, pp. 105-120, 2012
  10. Brin, Sergey, Lawrence Page, "The anatomy of a large-scale hypertextual Web search engine," Computer networks and ISDN systems, pp. 107-117, 1998.
  11. Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har'El, N., Ronen, I., and Chernov, S., "Personalized social search based on the user's social network," 18th ACM conference on Information and knowledge management, pp. 1227-1236, 2009.
  12. A. Java, X. Song, T. Finin, and B. Tseng, "Why We Twitter : Understanding Microblogging Usage and Communities," Proc of 9th WebKDD and 1st SNAKDD 2007 workshop on Web mining and social network analysis, 2007.
  13. Kristina Lerman and Rumi Ghosh, "Information Contagion: n Empirical Study of the Spread of News on Digg and Twitter Social Networks," ICWSM, 2010. Web mining and social network analysis, 2007.
  14. N. J. Belkin, "Some(what) grand challenges for information retrieval," SIGIR Forum, 42(1):p.47-54, 2008.
  15. M. J. Carman, M. Baillie, and F. Crestani, "Tag data and personalized information retrieval," Proc. of the CIKM workshop on Search in social media, pp. 27-34. ACM, 2008.
  16. D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har'el, I. Ronen, E. Uziel, S. Yogev, and S. Chernov, "Personalized Social Search based on the User's Social Network," Proc of CIKM '09, pp. 1227-1236.
  17. E. J. Lee, J. D. Kim, J. S. Son, C. H. Lee, and D.-K. Baik, "Personalized Social Search based on Social Network Service," Korea Information Science Society Conference Proc., 38(2C), pp. 82-84, 2011. (in Korean)
  18. Y. D. Seo, J. D. Kim, C. H. Lee, and D. K. Baik, "A Page Rank Algorithm for Information Retrieval in Real Time," Korea Information Science Society Conference Proc., 38(2C), pp. 57-60, 2011. (in Korean)
  19. K. S. Seol, J. D. Kim, H. N. Shim, and D. K. Baik, "Intimacy Measurement Method and Experiment between Social Network Service Users," Korea Information Science Society Conference Proc., 39(4), 335-341, 2012.8. (in Korean)
  20. S. Min, and M. C. Kim, "RT^ 2M: Real-Time Twitter Trend Mining System," Social Intelligence and Technology (SOCIETY), 2013 International Conference on. IEEE, 2013.
  21. Mathioudakis, Michael, and Nick Koudas, "Twittermonitor: trend detection over the twitter stream," Proc. of the 2010 ACM SIGMOD International Conference on Management of data, ACM, 2010.
  22. Benhardus, James, and Jugal Kalita, "Streaming trend detection in twitter," International Journal of Web Based Communities 9.1 (2013): 122-139. https://doi.org/10.1504/IJWBC.2013.051298
  23. Hiemstra, Djoerd. "A probabilistic justification for using $tf^x$ idf term weighting in information retrieval," International Journal on Digital Libraries 3.2 (2000): 131-139. https://doi.org/10.1007/s007999900025
  24. Salton, Gerard, and Christopher Buckley, "Termweighting approaches in automatic text retrieval," Information processing & management 24.5 (1988): 513-523. https://doi.org/10.1016/0306-4573(88)90021-0
  25. Sparck Jones, Karen, Steve Walker, and Stephen E. Robertson, "A probabilistic model of information retrieval: development and comparative experiments: Part 1," Information Processing & Management 36.6 (2000): 779-808. https://doi.org/10.1016/S0306-4573(00)00015-7
  26. Sparck Jones, Karen, Steve Walker, and Stephen E. Robertson, "A probabilistic model of information retrieval: development and comparative experiments: Part 2," Information Processing & Management 36.6 (2000): 809-840. https://doi.org/10.1016/S0306-4573(00)00016-9
  27. Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schutze, Introduction to information retrieval, Vol. 1, Cambridge: Cambridge university press, 2008.

Cited by

  1. Geographical Name Denoising by Machine Learning of Event Detection Based on Twitter vol.4, pp.10, 2015, https://doi.org/10.3745/KTSDE.2015.4.10.447