• Title/Summary/Keyword: 생물안전 3등급 연구시설

Search Result 12, Processing Time 0.024 seconds

A Case Study of Biosafety Level-3 Research Facilities Validation (생물안전 3등급 연구 시설의 검증 사례)

  • Ju, Young-Duk;Kim, Jin;Son, Ik-Soo;Noh, Hee-Jeon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.887-892
    • /
    • 2009
  • Biosafety research facilities require to verified about the facility and experimental environment, especially for level-3 and level-4 of biosafety research facilities verification is very important. In this paper, introduce verified procedures and present the methods and the results through a verified case of the biosafety level-3 research facilities.

  • PDF

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.745-750
    • /
    • 2009
  • In Korea, since the implementation of the GMO Law, the intrest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. was performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab.(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios was performed in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

  • PDF

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.671-677
    • /
    • 2009
  • In Korea, since the implementation of the LMO Law, the interest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. is performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab,(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios is carried out in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

A Study on the Prediction of Indoor Environment in Bio Safety Level 3 Laboratory According to Biohazard Scenario (생물안전 3등급(BSL3)시설의 생물재해 시나리오에 따른 실내 공기환경예측에 관한 연구)

  • Park, Hyun-Jin;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.745-750
    • /
    • 2010
  • Since the implementation of the LMO Law in Korea, the importance of the design qualification of BSL3 lab. is emphasizing. In this study, multizone simulation for three kind of biohazard scenarios using CONTAM is performed for design qualification of BSL3 lab. Also, in the case of unexpected spread of contaminants such as Influenza A virus(H1N1) in BL3 zone, the design qualification is carried out for diffusion and decontamination of contaminants according to differential pressure of BSL3 anteroom and door area of BSL3 lab. Also, in this study, appropriateness of laboratory room differential pressure and air flow rate to maintain pressure difference between laboratory rooms, and energy consumption due to air change rate variation according to door area in BL3 lab. Simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

Bio Safety Level 3 Laboratory Construction Case (생물안전 3등급연구시설의 시공 사례)

  • Kim, Bong-Shin;Lim, Seon-Ho;Jung, Choong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.881-886
    • /
    • 2009
  • Bio safety level-3 laboratory is the research facility with concerns for the BL-3 contamination, at the same time the safety of it is guarantied. Based on comfortable environmental maintenance of the research laboratory, building, machinery, electricity, and controls are facilitated to keep airtightness(minus pressure) of each room in case of not only access and operation, but even emergency.

  • PDF

An Analytical Study on the Prediction of Indoor Air Quality and the Reduction of Air Conditioning Load in Bio Safety Level 3 Laboratory (생물안전 3등급시설의 공기환경 예측 및 공조부하 절감에 대한 해석)

  • Hong, Jin Kwan;Park, Hyun Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.813-822
    • /
    • 2012
  • In this study, the multizone simulation for biosafety of BSL3 lab. and energy simulation are carried out simultaneously by using linked model of CONTAM and TRNSYS. In BSL3 lab., annual energy consumption is approximately five to ten times more than the magnitude of the office building. This is because required air change rate is extremely large and it is difficult to maintain room pressure difference efficiently. To maintain pressure difference between laboratory rooms through sealing condition of doors and proper airflow control is significant. In this study, to predict indoor environment of the BSL3 lab.(Influenza A research lab.), the multizone simulation for four kinds of biohazard scenario is also performed as part of risk assessment. Multizone and energy simulation results by using linked model show that these approaches are used as a tool for the energy efficient design and operation method for the safer BSL3 lab. facilities.

A Study on the Circulation System of Biosafety Level 4 Laboratory Facilities (생물안전 4등급(BL4) 실험시설의 동선계획에 관한 연구)

  • Kwon, Soonjung;Choi, Hongbin
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • Recently, with the advent of high risk infectious agent such as the Ebola virus, SARS, special research facilities dealing with such dangerous pathogenic are drawing attention gradually. Especially, this kind of facilities can be called BL4(Biosafety Level 4) facility. At the moment, Korean government is going to construct BL4 institute in order to handle efficiently such kind of pathogen. However, there are no proper design guidelines for BL4 facility. This paper proposes circulation system of BL4 facility on the basis of analysis of existing BL4 guidelines of Canada, and Korean BL3 facilities. The outcomes of this study are as follows. At first, functional areas of BL4 facilities have been divided into three categories according to the hazard level ; dangerous area, transitional area, and ordinary area. Secondly, circulation system of BL4 facility has been explored as a form of diagram according to the circulating subjects. These include human, laboratory animals, hazardous pathogen, equipments and cloth. This study has some limitations in that it lacks empirical evidences and concrete SOPs(Standard Operating Procedure). Despite of some weaknesses, it is expected to give some preliminary guidelines for the design of circulation system in BL4 facilities.