• Title/Summary/Keyword: 생물부착

Search Result 545, Processing Time 0.032 seconds

Studies on characteristics of water quality variation by the stream bed materials (하상재료에 의한 수질변화 특성에 관한 연구)

  • Hong, Il;Lee, Jin-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1093-1097
    • /
    • 2006
  • 하천수계는 여러 인자들의 상호작용을 통하여 변화하게 되며, 하천 자정능력에 관한 연구는 이를 중심으로 진행되어 왔다. 여러 환경 요인 중 하상재료는 하천의 조도와 수생태계의 특성을 변화시키게 되며, 유입수의 성상에 따라 수저퇴적물이 쌓이거나, 생물막이 형성되는 매개체 역할을 하게 된다. 특히, 하천의 폭이 좁고 수심이 얕은 개울에서는 하상 퇴적물이 수질에 기여하는 영향이 큰 것으로 알려져 있다. 국내하천의 경우 하상재료가 주로 모래와 자갈이 주를 이루고 있으며, 수심이 낮아 빛의 투과성이 양호하여 부착조류의 증식 및 하상재료(모래 및 자갈 등)를 기질로 한 생물막 형성 등 하상재료는 하천환경의 변화 및 수질변화가 일어나는데 상당한 기여를 하는 것으로 보고되고 있다. 본 연구에서는 하천의 하상재료가 설치된 수로를 이용하여 이화학적요소를 조사, 분석함으로써 하상재료를 통한 수질변화 특성을 비교.검토 하였다. 그 결과 하상재료의 입경이 클수록 DO 변화가 더 큰 폭으로 증가 하였으며, 수위와 유속의 경우 수위가 낮으면서 유속이 적정수준일 경우 DO 증가가 나타나는 것으로 관측되었다. 하천수가 수로에 의해 순환되면서 유기물 저감속도의 측정결과 초기 흡착, 침전 등의 물리적 작용이 부착조류 증식 등의 생물학적 작용보다 우선되면서 입자성 유기탄소(POC)의 제거속도가 용존성 유기탄소(DOC) 의 경우보다 더 빠르고 우선되는 것으로 조사되었다. 영양염류의 경우 부착성조류에 의한 질소 제거능은 실제 질산화작용은 활발히 이루어졌으나 탈질작용에 의한 총질소의 제거는 미비한 것으로 나타났으며, 총인은 입자성유기탄소가 제거되는 것과 유사한 경향을 나타내 제거 기작이 대부분 흡착, 침전에 의한 물리적 자정 작용에 기인한 것으로 조사되었다. 또한 하상재료 입경 변화에 따른 수질변화 특성은 기질(하상재료)의 입경이 작을수록 오염물질의 분해능이 큰 것으로 나타났다. 이와 같이 여러 하천환경 요인 중 하상재료에 의한 하천환경의 다양한 변화는 수질변화 및 자정능력에 큰 영향을 미치게 된다.

  • PDF

Resistance of Biofilm Bacteria to Chlorination (생물막 세균의 염소소독제에 대한 내성)

  • 조재창;박성주;김상종
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 1993
  • The Enterobacter cloacae biofilms developed on slide glasses and galvanized-iron coupons were applied to test the attached bacterial resistance to chlorination. The chlorine resistances of biofilm bacteria grown on the slide glasses and galvanized-iron coupons were 14 and 480 times that of the suspended bacteria, respectively. The chlorine resistance of particleattached bacterial populations was 48 times that of suspended bacterial populations. The biofilm bacterial densities developed on the slide glasses and galvanized-iron coupons which were immersed in the flowing tap water for 75 days were $4.75 {\times} 10^{4}$ and $1.12 {\times} 10^5 cfu/cm^{2}$ It is concluded that main mechanisms of enteric or HPC bacterial resistance to chlorination in tap waters are bacterial attachment or . adsorption to particles or bacterial aggregations and formation of biofilms on the inner wall of distribution systems by escaped bacteria from chlorination in water treatment processes, which results in bacterial regrowth in water distribution systems.

  • PDF

A Study of the Distribution of a Bacterial Community in Biological-Activated Carbon (BAC) (생물활성탄 부착세균 분포 실태에 관한 연구)

  • Park, Hong-Ki;Jung, Eun-Young;Cha, Dong-Jin;Kim, Jung-A;Bean, Jae-Hoon
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1237-1242
    • /
    • 2012
  • The use of biological-activated carbon (BAC) processes in water treatment involves biofiltration, which maximizes the bacteria's capabilities to remove organic matter. In this study, the distribution of the bacterial community was assessed in response to different types of BAC processes applied downstream in the Nakdong River. The bacterial biomass and activity were $1.20{\sim}34.0{\times}10^7$ CFU/g and 0.61~1.10 mg-C/$m^3{\cdot}hr$ in coal-based BAC, respectively. The attachment of the bacterial biomass and the removal efficiency of the organic carbon were greatest with the coal-based activated carbon. The bacteria attached to each activated carbon material were detected in the order of Pseudomonas genus, Chryseomonas genus, Flavobacterium genus, Alcaligenes genus, Acinetobacter genus, and Spingomona genus. Pseudomonas cepacia was the dominant species in the coal-based materials, and Chryseomonas luteola was the dominant species in the wood-based material.

A Study on the Physical Properties of Silicone Type Marine growth Antifouling Coatings (실리콘계 해양생물 부착 방지 도료의 도막 물성 고찰)

  • Kim, Seong-Kil;Choi, Dae-Won;Han, Won-Heui;Kwon, Hyuk-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.134-135
    • /
    • 2013
  • In this study, the physical properties and antifouling were investigated to make the Marine growth antifouling coatings by blending of synthesized silicone resin and pigment with a low surface tension. To examine the film properties and foul release of the prepared coatings, film specimens were prepared with the prepared coatings and anti corrosion coatings. The test results showed that the silicone type antifouling coatings had very excellent antifouling properties rather than any other coatings because of the coating films had followed the low surface tension and elasticity, and prevention of adhesion for marine growth and mechanical adhesions.

  • PDF

The effect of dead coral skeletons on the water quality and sessile mollusks in the closed system (폐쇄시스템 내에서 죽은 산호골격이 수질과 고착성 연체동물에 미치는 영향)

  • Lee, Nam Hyeon;Han, Kyung Nam
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.187-196
    • /
    • 2012
  • Recently, for the purpose of constructing artificial ecosystem, the public aquarium and experimental mesocosm systems are receiving attention. To design and establish an aquarium and mesocosm system, there is need of several materials for simulating the environment, such as sediments, rocks, and plants. Expecially for sessile mollusks, there must be proper materials to which sessile invertebrates can adhere. Nowadays, many aquariums and mesocosm systems are using dead coral skeletons for sessile mollusks. This study was proceeded to have data on the effect of dead coral skeletons on water qualities with the experiment on the environmental factors. For this purpose, I made glass tank for experiment, chose two types of dead coral skeletons imported from the Indonesia and observed the change of water qualities and decomposition efficiency of TAN (total ammonia-nitrogen), nitrite ($NO_2{^-}$) and nitrate ($NO_3{^-}$). As a result, the lager the surface area was, the more TAN, nitrite and nitrate decomposition rate increased. In addition, coral skeletons covered with crustose algae and bacteria in the tank showed faster TAN, nitrite and nitrate removal rate and stabilization. Accordingly, this experiment suggested that dead coral skeletons could be used as a sub filter for the closed system as well as an adhering plate.

Estimation of Water Purification Ability with Applying Porous Concrete to Weir and Riverbed Materials (다공성 콘크리트의 보 및 하상재료 적용에 따른 하천 수질정화 능력 평가)

  • Choi, I-Song;Kim, Jin-Hong;Choi, Gye-Woon;Oh, Jong-Min
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1013-1023
    • /
    • 2003
  • This study was performed to improve water quality of stream by applying hydraulic structures (weir and river bed material) made of porous concrete. The physical and chemical characteristics of porous concrete were measured to estimate application possibility of it in hydraulic structures and it was considered as a proper material for the hydraulic structures. In the results of comparison for the component of matters attached on the hydraulic structures made of porous and ordinary concrete, DW (dry weight) amount attached on porous concrete was 1.6 times higher than that on ordinary concrete under the condition of the same flow rate but influence by flow rate (difference of 10 times) was not shown. Therefore, we could understand that the material of media was more important in DW amount than flow rate. The rate of AFDM (ash free dry mass) to DW also was more at porous concrete than at ordinary concrete. Especially, the high rates of nitrogen and phosphorous in matters attached on porous concrete verify that they were removed by assimilation, adsorption and metabolism of periphyton. The removal percentage of SS, BOD, COD, T-N and T-P by hydraulic structures applying porous concrete compared with ordinary concrete was increased by 34.6%, 36.9%, 33.9%, 18.3% and 21.6%, respectively. Therefore, applying porous concrete to hydraulic structure is expected to contribute to improvement of stream water quality.