DOI QR코드

DOI QR Code

A Study of the Distribution of a Bacterial Community in Biological-Activated Carbon (BAC)

생물활성탄 부착세균 분포 실태에 관한 연구

  • Park, Hong-Ki (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Jung, Eun-Young (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Cha, Dong-Jin (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Kim, Jung-A (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Bean, Jae-Hoon (Water Quality Institute, Water Works HQ of Busan Metropolitan City)
  • 박홍기 (부산광역시 상수도사업본부 수질연구소) ;
  • 정은영 (부산광역시 상수도사업본부 수질연구소) ;
  • 차동진 (부산광역시 상수도사업본부 수질연구소) ;
  • 김정아 (부산광역시 상수도사업본부 수질연구소) ;
  • 빈재훈 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2012.08.02
  • Accepted : 2012.09.17
  • Published : 2012.09.30

Abstract

The use of biological-activated carbon (BAC) processes in water treatment involves biofiltration, which maximizes the bacteria's capabilities to remove organic matter. In this study, the distribution of the bacterial community was assessed in response to different types of BAC processes applied downstream in the Nakdong River. The bacterial biomass and activity were $1.20{\sim}34.0{\times}10^7$ CFU/g and 0.61~1.10 mg-C/$m^3{\cdot}hr$ in coal-based BAC, respectively. The attachment of the bacterial biomass and the removal efficiency of the organic carbon were greatest with the coal-based activated carbon. The bacteria attached to each activated carbon material were detected in the order of Pseudomonas genus, Chryseomonas genus, Flavobacterium genus, Alcaligenes genus, Acinetobacter genus, and Spingomona genus. Pseudomonas cepacia was the dominant species in the coal-based materials, and Chryseomonas luteola was the dominant species in the wood-based material.

정수처리 공정에서 생물활성탄(BAC) 공정은 미생물의 유기물 제거능을 극대화시킨 일종의 생물여과 공정이다. 본 연구는 낙동강 원수를 이용하여 재질이 다른 생물활성탄을 사용하고 있는 정수장을 대상으로 세균 군집을 조사하였다. 실험결과 석탄계 재질의 BAC 부착세균 생체량 및 활성도가 각각 $1.20{\sim}34.0{\times}10^7$ CFU/g, 0.61~1.10 mg-C/$m^3{\cdot}h$의 범위를 보여 세균 생체량과 DOC 제거율은 석탄계 재질이 가장 높은 것으로 나타났다. 부착세균을 동정한 결과 Pseudomonas 속이 우점하였으며, 그 다음으로 Chryseomonas 속, Flavobacterium 속, Alcaligenes 속, Acinetobacter 속, Sphingomonas 속 등의 순으로 동정되었다. 그리고 Pseudomonas cepacia는 석탄계 재질, Chryseomonas luteola는 목탄계 재질의 우점세균으로 조사되었다.

Keywords

References

  1. Adamson, A. W. 1982. Physical Chemistry of Surfaces. 4th Ed. John Wiley & Son Inc. NY, USA.
  2. Aiken, G. R., McKnight, D. M., Wershaw, R. L. and MacCarthy, P. 1987. Humic Subtances in Soil, Sediment and Water. Wiley-Intersciece. NY, USA.
  3. Bell, R. T., Ahlgren, G. M. and Ahlgren, I. 1983. Estimating bacterioplankton production by the [$^3H$]thymidine incorporation in a eutrophic Swedish Lake, Appl. Environ. Microbiol. 45, 1709-1721.
  4. Boley, A., Unger, B., Muller, W. R., Kuck, B. and Deger, A. 2006. Biological drinking water treatment for nitrate and pesticide(endosulfan) elimination. Water Sci. Technol : Water Suppl. 6, 123-127.
  5. Bouvier, T. and Giorgio, P. A. D. 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol. Ecol. 44, 3-15. https://doi.org/10.1016/S0168-6496(02)00461-0
  6. Chrzanowski, T. H. and Hubbard, J. G. 1988. Primary and bacterial secondary production in a south-western reservoir. Appl. Environ. Microbiol. 54, 661-669.
  7. Dussert, B. and Van Stone, G. 1994. The biological activated carbon process for water purification. Water Eng. Manage. 141, 22-24.
  8. Falkentoft, C. M., Muller, E., Amz, P., Harremoes, H., Wwlderer, P. A. and Wuertz, S. 2002. Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH. Water Res. 36, 491-500. https://doi.org/10.1016/S0043-1354(01)00231-7
  9. Fuhrman, J. A. and Azam, F. 1982. Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results. Mar. Biol. 66, 109-120. https://doi.org/10.1007/BF00397184
  10. Ghosh, U., Weber, A., Jensen, J. and Smith, J. 1999. Granular activated carbon and biological active carbon treatment of dissolved and sorbed polychlorinated biphenyls. Water Environ. Res. 71, 232-240. https://doi.org/10.2175/106143098X121761
  11. Graham, N. 1999. Removal of humic substances by oxidation/biofiltration processes-a review. Water Sci. Technol. 40, 141-148.
  12. Kihn, A., Andersson, A., Laurent, P., Servais, P. and Prevost, M. 2002. Impact of filtration material on nitrification in biological filters used in drinking water production. J. Wat. Suppl.: Res. Technol. Aqua. 51, 35-45.
  13. Krieg, N. R. and Holt, J. G. 1984. Bergey's Manual of Systematic Bacteriology. Williams & Wilins. Baltimore, USA.
  14. Melin, E., Eikebrokk, B., Brugger, M. and Odegaard, H. 2002. Treatment of humic surface water at cold temperatures by ozonation and biofiltration, Water Sci. Tech.: Wat. Supply 2, 451-457.
  15. Nerenberg, R., Rittmann, B. E. and Soucie, W. J. 2000. Ozone/biofiltration for removing MIB and geosmin. J. Am. Water Works Assoc. 92, 85-100.
  16. Park, E. J. 1997. A Study on the Variation of AMWDS after each stage in BAC Pilot-plant. Theme of Master in National Busan University.
  17. Park, J. Y. 1994. Drinking Water Microbiology. pp. 385-396, Chemical Engineering Research Corporation, Seoul.
  18. Rice, R. G. and Robson, C. M. 1982. Biological Activated Carbon. Lewis Publishers, Boca Raton, Florida.
  19. Rigway, H. F. and Olsan, B. H. 1981. Scanning electron microscope evidence for bacterial colonization of a drinking water distribution system. Appl. Environ. Microbiol. 41, 274-287
  20. Sakoda, A., Wang, J. and Suzuki, M. 1996. Microbial activity in biological active carbon bed by pulse responses. Water Sci. Technol. 34, 213-222.
  21. Scholz, M. and Martin, R. 1997. Ecological equilibrium on biological active carbon. Water Res. 31, 2959-2968. https://doi.org/10.1016/S0043-1354(97)00155-3
  22. Servais, P., Billen, G., Ventresque, C. and Bablon, G. P. 1991. Microbial activity in GAC filters at the Choisy-Roi treatment plant. J. Am. Water Works Assoc. 75, 62-68.
  23. Servais, P., Billen, G., Bouillot, P. and Benezet, M. 1992. A pilot study of biological GAC filtration in drinking-water treatment. Aqua 41, 163-168.
  24. Stewart, M. H., Wolfe, R. L. and Means, E. G. 1990. Assessment of bacteriological activity in carbon treatment of drinking water. Appl. Environ. Microbiol. 56, 3822-3823.
  25. Takeuchi, Y., Mochidzuki, K., Matsunobu, N., Kojima, R., Motohashi, H. and Yoshimoto, S. 1997. Removal of organic substances from water by ozone treatment followed by biological active carbon treatment. Water Sci. Technol. 35, 171-178.