• Title/Summary/Keyword: 생리적 대사

Search Result 454, Processing Time 0.043 seconds

Physiological Changes of Saccharomyces cerevisiae by High Voltage Pulsed Electric Field Treatments (고전압 펄스 전기장 처리에 의한 Saccharomyces cerevisiae의 생리적 변화)

  • Park, Hee Ran;Yoon, So Jung;Park, Han-Sul;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.590-597
    • /
    • 2013
  • High voltage pulsed electric fields (PEF) treatment is a promising non-thermal processing technology that can replace or partially substitute for thermal processes. The aim of this research was to investigate the microbial inactivation mechanisms by PEF treatment in terms of physiological changes to Saccharomyces cerevisiae. PEF was applied at the electric field strength of 50 kV/cm, treatment time of 56 ${\mu}s$ and temperature of $40^{\circ}C$. The microbial cells treated with PEF showed loss of salt tolerance on the cell membrane and collapse of the relative pH gradient on in-out of cells. Cell death or injury resulted from the breakdown of homeostasis, decreased $H^+$-ATPase activity, and loss of glycolysis activity.

Biodegradation Pathways of Polychlorinated Biphenyls by Soil Fungus Aspergillus niger (Polychlorinated Biphenyl의 토양 미생물 Aspergillus niger에 의한 생분해 경로)

  • Kim, Chang-Su;Lim, Do-Hyung;Keum, Young-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As of many organochlorine pesticides, polychlorinated biphenyls are ubiquitous organic contaminants, which can be found in the most environmental matrices. Their toxic effects include endocrinedisrupting activity. Most researches with these toxicants performed with mixtures of congeners, namely Aroclor and related study has been done in complex environmental matrix, rather than single biosystems or pure congeners. 5 congeners were synthesized and their fates in pure microbial culture (Aspergillus niger) were determined in this study. Among biphenyl and synthetic congeners, biphenyl, PCB-1 (2-chlorobiphenyl), and PCB-3 (4-chlorobiphenyl) were rapidly transformed to hydrophilic metabolites, followed by PCB-38 (3,4,5-trichlorobiphenyl), while the degradation of PCB-126 (3,3',4,4',5-pentachlorobiphenyl) was not observed. The amounts of transformation for biphenyl, PCB-1, PCB-3, and PCB-38 were 65, 38, 52, and 2% respectively. The major metabolites of the above congeners were identified as mono- and di-hydroxy biphenyls, which are known to give adverse endocrinological effects.

Effect of the Overexpression of the sprD Gene Encoding Streptomyces griseus Pretense D for the Differentiation of Streptomyces griseus HH1 (sprD유전자의 과발현이 Streptomyces griseus HH1의 분화에 미치는 영향)

  • 이재학
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.364-369
    • /
    • 2002
  • Streptomyces shows a eukaryotic characteristic that vegetative cell can grow into mycelial form and has morphological and physiological differentiation at a certain period during its life cycle. Streptomyces has been used for the production of many biologically active compounds, such as antibiotics and pronase. Production of second metabolites and differentiation of the vegetative cell share the certain period of its lift cycle. Therefore, second metabolites may affect the differentiation of the vegetative cell. One of the microbial hormone, called A-factor, regulates the production of second metabolites, sporulation and differentiation of the cells. Streptomyces griseus produces streptomycin as well as many different kinds of proteinase. As mentioned, period of proteinases production overlaps with the period of differentiation of the vegetative cells. Protease may play a important role for the differentiation of the cells. In this paper, function of the SGPD gene cloned from S. griseus IFO 13350 tested whether it affects for the differentiation of A-factor mutated S. griseus HH1 and S. griseus IFO13350. pWHM3 and pWHM3-sprD plasmid was transformed into S. griseus HH1 and S. griseus IFO13350. Chymotrypsin activity of the cultured medium of the transformants with pWHM3-sprD plasmid didn't show any change with that of the transformants with plasmid only. The transformants with pWHM3-sprD plasmid didn't show the increase of the production of actinorhodin as well as morphological change in S. griseus IFO 13350 and HH1, as well. The promoter sequences of the SGPA and SGPB gene which encode chymotrypsin-like protease, were compared with that of SGPD gene. Regulatory mechanism of gene expression of proteinase genes will be studied for the development of high production system for protease as well as the function of the proteases.

The Metabolic Effects of FGF21: From Physiology to Pharmacology (생리, 약학적 관점에서 fibroblast growth factor 21 (FGF21)의 대사 효과 고찰)

  • Song, Parkyong
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.640-650
    • /
    • 2020
  • Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF protein family which is highly synthesized in the liver, pancreas, and adipose tissue. Depending on the expression tissue, FGF21 uses endo- or paracrine features to regulate several metabolic pathways including glucose metabolism and energy homeostasis. Different physiologically stressful conditions such as starvation, a ketogenic diet, extreme cold, and mitochondrial dysfunction are known to induce FGF21 synthesis in various tissues to exert either adaptive or defensive mechanisms. More specifically, peroxisome proliferator-activated receptor gamma and peroxisome proliferator-activated receptor alpha control FGF21 expression in adipose tissue and liver, respectively. In addition, the pharmacologic administration of FGF21 has been reported to decrease the body weight and improve the insulin sensitivity and lipoprotein profiles of obese mice and type 2 diabetes patients meaning that FGF21 has attracted huge interest as a therapeutic agent for type 2 diabetes, obesity, and non-alcoholic fatty liver disease. However, understanding FGF21 remains complicated due to the paradoxical condition of its tissue-dependent expression. For example, nutrient deprivation largely increases hepatic FGF21 levels whereas adipose tissue-derived FGF21 is increased under feeding condition. This review discusses the issues of interest that have arisen from existing publications, including the tissue-specific function of FGF21 and its action mechanism. We also summarize the current stage of a clinical trial using several FGF21 analogs.

Biochemical and Histological Effects of Phellinus linteus Methanol Extract on Liver Lipid Metabolism of Rats Fed $CCl_4$ and High Fat (상황버섯이 사염화탄소와 고지방을 투여한 흰쥐의 간지질 대사에 미치는 생화학적, 형태학적 연구)

  • 정차권;정명은;함승시;남상명;강일준;김수진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.331-337
    • /
    • 2001
  • The effect of Phellinus linteus methanol extract on the lipid metabolism in the liver of rat was investigated in this study. Rats were randomly divided into 6 groups including the control, $CCl_4$and high fat group plus sub-groups with Phellinus linteus methanol extract administration. Methanol extracts of Phellinus linteus were fed 50mg/kg B.W daily via drinking water. A 1.2mL of $CCl_4/kg$ body weight was administered by oral intubation twice a week for total six times. The administration of $CCl_4$ increased total cholesterol, TG, LDL and LDL-phospholipid. However, the level of liver cholesterol and triglycerides were significantly decreased while HDL-cholesterol was increased by the extract feeding. The activities of GOT, GPT, AP and LDH were greatly enhanced by the extract feeding. Electronmicrograph showed that $CCl_4$ treatment deteriorated the structure of cytoplasmic matrix with its uneven distribution. However, the extract treatment reconstituted the damaged cytoplasm and stimulated mitochondriagenesis. From these results, it was suggested that Phellinus linteus can help to recover the damaged liver function and further may help to prevent senescence diseases such as fatty liver, hypertension and hyperlipidemia.

  • PDF

Flavonoid Biosynthesis: Biochemistry and Metabolic Engineering (Flavonoid 생합성:생화학과 대사공학적 응용)

  • Park, Jong-Sug;Kim, Jong-Bum;Kim, Kyung-Hwan;Ha, Sun-Hwa;Han, Bum-Soo;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.265-275
    • /
    • 2002
  • Flavonoid biosynthesis is one of the most extensively studied areas in the secondary metabolism. Due to the study of flavonoid metabolism in diverse plant system, the pathways become the best characterized secondary metabolites and can be excellent targets for metabolic engineering. These flavonoid-derived secondary metabolites have been considerably divergent functional roles: floral pigment, anticancer, antiviral, antitoxin, and hepatoprotective. Three species have been significant for elucidating the flavonoid metabolism and isolating the genes controlling the flavonoid genes: maize (Zea mays), snapdragon (Antirrhinum majus) and petunia (Prtunia hybrida). Recently, many genes involved in biosynthesis of flavonoid have been isolated and characterized using mutation and recombinant DNA technologies including transposon tagging and T-DNA tagging which are novel approaches for the discovery of uncharacterized genes. Metabolic engineering of flavonoid biosynthesis was approached by sense or antisense manipulation of the genes related with flavonoid pathway, or by modified expression of regulatory genes. So, the use of a variety of experimental tools and metabolic engineering facilitated the characterization of the flavonoid metabolism. Here we review recent progresses in flavonoid metabolism: confirmation of genes, metabolic engineering, and applications in the industrial use.

방선균을 이용한 항생물질 발효

  • 남두현
    • The Microorganisms and Industry
    • /
    • v.18 no.3
    • /
    • pp.63-68
    • /
    • 1992
  • 방선균에서 항생물질을 발효 생산하기 위해서는 이와 관련된 방선균의 생리학적 및 생화학적 특성을 고찰해 볼 필요가 있다. 우선, 항생물질은 방선균의 2차 대사산물로써 이의 생산은 미생물의 성장과는 거의 연계되어 있지 않다. 즉, 방선균의 발효 과정을 살펴보면, 일반적으로 균체가 성장하는 증식 단계(trophophase)와 항생물질이 생산되는 발효 단계(idiophase)로 구분할 수 있다(2). 다시 말해서, 항생물질과 같은 2차 대사산물은 균체의 성장이 어느 정도 완료되어진 이후에 생합성되어지기 시작하며, 이는 방선균의 생활 주기상의 분화과정과도 밀접한 관계를 갖고 있는 것으로 알려져 있다. 또 하나의 특징은 한 종류의 방선균으로부터 유사한 화학적 골격을 지닌 여러 종의 항생물질들이 동시에 생산되어지는 경우가 많으며, 외부 환경에 따라 그 생산량이 크게 영향을 받는다는 사실이다. 따라서 방선균에서 목적하는 항생물질만을 과량생산하기 위해서는 배지의 조성을 비롯하여 pH, 발효온도, 통기, 점도 등 여러가지 발효 조건들을 잘 조절해 주어야 한다. 이러한 관점에서 방선균을 이용한 항생물질 발효에 있어서 그 생산량을 증대시키기 위해 고려해 주어야 할 사항들을 고찰해 보기로 한다.

  • PDF

곤쟁이, Neomysis awatschensis의 대사에 미치는 중금속 및 내분비계 장애 물질의 영향

  • Jin, Pyung;Shin, Yoon-Kyung;Ji, Jung-Hoon;Lee, Jung-A;Lee, Jung-Sik;Kang, Ju-Chan
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.327-328
    • /
    • 2001
  • 최근 우리나라 연안의 오염은 날로 심각해지고 있는 실정이며, 이에 따른 해양생물의 피해는 상당할 것으로 예측된다. 이러한 영향을 파악하는 방법 중 수산생물의 생리대사의 변동을 조사하는 것은 이들 생물의 생산성과 관련이 클 것으로 인식되고 있다. 곤쟁이는 해양오염원에 대한 공시재료로 널리 사용되고 있으며, 연안 오염에 대한 간접적 평가에 좋은 실험재료로 생각되고 있다(Gaufin et al., 1965; McLusky and Heard, 1971). (중략)

  • PDF

양식참굴의 PAHs 노출에 대한 생리적 적응

  • 서종환;조상만;정우건
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.46-146
    • /
    • 2003
  • 해양환경의 대표적 오염물질인 PAHs가 양식굴의 생리대사에 미치는 영향을 파악하고자, 서로 다른 PAHs 농도에 노출된 굴의 여수율, 호흡율, 배설율 및 동화율의 변화를 조사하였다. 부착생물을 깨끗하게 제거한 굴을 실험실로 옮겨 3일정도 순치시키고, 이후 각각의 0, 50, 100, 200ppb의 농도별로 약 10일간 미리 노출시켰다. 이후 각 개체별로 2L 들이 2$0^{\circ}C$항온수조에서 0.2$\mu\textrm{m}$ 여과해수를 사용하여 실험하였다. 여수율은 Chaetoceros simplex를 지표생물로 하여 수조내 시간당 감소율을 구하여 Kim(1995)의 식에 의해 구하였다. 호흡율은 유동파라핀으로 외부와의 공기접촉을 단절시키고, 수조내 단위시간당 DO meter로 산소변화를 측정하여 Widdows and Johnson(1988)의 식을 변형하여 계산하였다. 배설율은 단위시간동안 수조내 NH$_4$-N 농도 증가량으로 조사하였고, NH$_4$-N은 HACH Inc.에서 제공하는 측정법을 따랐다. 여수율은 500ppb에서 다소 영향을 받아 증가하였다. 호흡율과 배설율은 노출농도가 증가함에 따라 증가하였지만, 50ppb와 100ppb에서는 다소 차이가 없었다. 따라서 양식굴이 PAHs와 같은 오염물질에 노출되었을 경우, 초기에는 여수율의 변화는 없고 배설율과 호흡율이 상승하여 체내 에너지 요구량이 증가하는 것으로 생각된다.

  • PDF

Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes - (명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -)

  • Choo, Yeon-Sik;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.397-406
    • /
    • 2000
  • In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

  • PDF