Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes -

명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -

  • Published : 2000.10.01

Abstract

In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

건조지대 및 염의 영향을 받는 지역에 널리 분포하는 명아주과 식물의 생리생태학적 적응 특성을 규명하기 위하여 교란지, 염습지, 사구, 간척지 등 다양한 환경에 적응하여 살아가고 있는 10종 명아주과 식물의 무기 및 유기용질의 양상을 조사하였다. 조사된 명아주과 식물은 토양의 칼슘 함량과는 무관하게 체내에 매우 소량의 수용성 칼슘을 함유하였으며, 아주 높은 수용성 K/Ca 비를 보였다. Na/sup +/, K/sup +/와 같은 양이온 및 Cl/ sup -/, SO₄/sup 2-/와 같은 음이온을 많이 축적하는 경향을 보였으며, 염 환경에서는 K/ sup +/보다 Na/sup +/ 이온을 선호하는 경향을 보였다. 이들 식물의 체내 총 질소함량은 높았지만, 아미노산성 질소는 총 질소함량의 5% 이하로 매우 낮은 값을 보였다. 세포질성 삼투인자로 널리 알려진 proline을 거의 함유하지 않았지만, 가용성 질소의 함량이 높은 것으로 보아 proline 이외의 다른 질소화합물이 체내 삼투 조절에 관여할 것으로 여겨진다. 야외에서의 이러한 생리적 특징이 통제된 환경에서도 동일한 양상을 보이는지를 조사하기 위하여, 사구 및 염습지의 대표적인 명아주과 식물(퉁퉁마디, 칠면초, 호모초, 가는갯능쟁이, 나문재) 5종을 선택하여 염환경 하에서 생육시켰다 (200 mM Nacl). 조사된 명아주과 식물은 매우 낮은 체내 수용성 Ca/sup 2+/ 함량, 알칼리 양이온의 축적 등 야외식 물과 유사한 생리양상을 보였다. 종합하면, 명아주과 식물은 알칼리 양이온 및 Cl/sup -/, NO₃/sup -/ 및 SO₄/sup 2-/와 같은 무기 음이온을 상당량 축적하고, 체내로 유입되는 Ca/sup 2+/을 Ca-oxalate로 침전시켜 세포질 내 수용성 칼슘함량을 매우 낮은 수준으로 유지하며, 아미노산이외의 다른 가용성 질소화합물을 보편적으로 함유하는 미네랄 대사의 특성을 보여준다. 이에 부가하여 토양 환경의 변화에 따라 체내의 무기이온 및 유기용질의 양상을 적절히 조절하는 독특한 생리적 특성이 이들 명아주과 식물을 건조 및 고염과 같은 불리한 환경을 극복하여 적응케 하는 토대가 되는 것으로 여겨진다.

Keywords

References

  1. 토양화학분석법 농업기술연구소
  2. Betaines in coastal plants. Biochem. Syst. Ecol. v.26 Adrian-Romero, M.;S.J. Wilson;G. Blunden;M.H. Yang;A. Carabot-Cuerva;A.K. Bashir
  3. Pflanzenoekologie und Mineralstoffwechsel Halophyten Albert, R.;H. Kinzel(ed.)
  4. Zur Rolle der loeslichen Kohlenhydrate in Halophyten des Neusiedlersee-Gebiets(Oesterreich). Oecol. Plant. v.13 Albert, R.;M. Popp
  5. Nitrogen metabolism in Plants Beevers, L.
  6. Plant Physiol v.84 Solute accumulation in tobacco cells adapted to NaCl Binzel, M.L.;P.M. Hasegawa;D. Rhodes;S. Handa;R.A. Boressan
  7. Biochem. Syst. Ecol. v.27 Betaine distribution in the Amaranthaceae Blunden, G.;M.H. Yang;G. Janicsak;I. Mathe;A. Carabot-Cuervo
  8. Genetic Aspects of Plant Mineral Nutrition Salinity tolerance of different halophyte types Breckle, S.W.;N.El Bassam(ed.);M. Dambroth(ed.);B.C. Loughman(ed.)
  9. Am. J. Bot. v.66 Evaluations of proline accumulationn in the adaptation of diverse species of marsh halophytes to the saline environment Calvalier, A.J.;A.H.C. Huang
  10. Kor. J. Ecol. v.21 Ecophysiological characteristics of plant taxon-specific calcium metabolism Choo, Y.S.;S.D. Song
  11. I. Field sample. Flora v.194 Mineral ion,nitrogen and organic solute pattern in sedges(Cares spp.)- a contribution to the physiotype concept. Choo, Y.S.;R. Albert
  12. Aust. J. Plant Physiol. v.3 Stress metabolism.Ⅲ.Salinity and proline accumulation in barley Chu, T.M.;D. Aspinall;L.G. Paleg
  13. Anal. Chem. v.28 Colorimetric method for determination of sugars and related substances Dubois, M.;K.A. Gilles;J. Hamilton;P.A. Rebers;F. Smith
  14. Ph. D. Thesis. Univ. Wien Mineral Stoffwechsel von Hochmoor-Vaccinium Arten in oekologischer Sicht Eder, M
  15. Plant Physiol. v.75 Osmotic stress-induced polyamine accumulation in cereal leaves.Ⅱ.Relation to amino acid pool Flores, H.E.;A.W. Galston
  16. Plant Cell Environ v.3 Chemical composition of salt marsh plants from Ynys Mon(Anglesey):The concept of physiotypes Gorham, J.;L.I. Hughes;R.G. Wyn Jones
  17. Physiol. Plant. v.53 Low-molecular-weight carbohydrates in some salt-stressed plants Gorham, J.;L.I. Hughes;R.G. Wyn Jones
  18. Environment and Plant Metabolism Biosynthesis of quaternary ammonium and tertiary sulphonium compounds in response to water deficit Hanson A.D;J.Rivoal;M.Burnet;B.Rathinasabapathi;N.Smirnoff(ed.)
  19. Mineral nitrogen in the plant-soil system Haynes R.J
  20. Flowering plants of the world Heywood V.H
  21. Phyton v.33 An ecophysiological investigation of plants from a habit in Zwingendorf(Lower Austria) containing Glauber's salt Huetterer F;R.Albert
  22. L.J.Plant Physiol v.137 The mechanism and regulation of proline accumulation in suspension cultures of the halophytic grass Distichlis spicata Ketchum R.E.B;R.C.Warren;L.J.Klima;F.Lopez-Gutierrez;M.W.Nabors
  23. Flora v.182 Calcium in the vacuoles and cell wall of plant tissue Kinzel H
  24. Flora v.178 Zum Ionenhaushalt einiger Plantago-Arten Koenigshofer H;H.Kinzel
  25. Z.Pflanyenphysiol. v.102 Physiological investigation in leaves of different ages of some halophytes and nonhalophytes Ladenburg K;R.Albert
  26. Physiological plant ecology Larcher W
  27. Mineral nutrition of higher plants Marschner H
  28. Ecological Studies 36 Physiological processes in plant ecology Osmond C.B;O.Bjoerkman;D.J.Anderson
  29. Encyclopedia of Plant Physiology.New Series v.1 Exchange of solutes between phloem and xylem and circulation in the whole plant Pate J.S;M.H.Zimmermann(ed.);J.A.Miburn(ed.)
  30. Flora v.184 Physiological characterization of Boraginacease with regard to their ecological status Pollack J;R.Albert
  31. Flora v.170 Free amino acids and nitrogen contents in halophytes from the Neusiedlersee region Popp M;R.Albert
  32. Z.Pflanzenphysiol v.114 Chemical composition of Australian mangroves.Ⅲ.Free amino acids,total methylated onium compounds and nitrogen Popp M;F.Larher;P.Weigel
  33. Biology of Salt Tolerant Plants. The role of organic solute in salinity adaptation of mangroves and herbaceous halophytes Popp M;R.Albert;M.A.Khan(ed,);I.A.Ungar(ed.)
  34. Plant Physiol v.80 Varietions in leaf solute amino acid and ammonia content in subtropical grasses related to salinity stress Pulich W.M
  35. Plant and Crop Stress Altered nitrogen metabolism under environmental stress conditions Rabe E;M.Pessarakli(ed.)
  36. Ph.D.Thesis.Univ.Wien Chemisch-Physiologische Charakterisierung der Brassicaceae.Ein Beitrag zum Physiotypen-Konzept Rattenbock H
  37. Flora v.178 Ionic patterns in some Crassulaceae from Austrian habitats Roessner H;M.Popp
  38. Environment and Plant Metabolism.Bios Proline accumulation during drought and salinity Samaras Y;R.A.Bressan;L.N.Csonka;M.G.Garcia-Rios;M.Paino D'Urzo;D.Rhodes;N.Smirnoff(ed.)
  39. Environment and Plant Metabolism.Bios Smirnoff N
  40. Flora v.169 Investigations on the mineral metabolism and the ecophysiology of Chenopodium album Steiner G.M;H.Kinzel
  41. Ecological Processes in Coastal Environments N-metabolism and salt tolerance in higher plant halophytes Stewart G.R;F.Larher;I.Ahmad;J.A.Lee;R.L.Jeffries(Ed.);A.J.Davy(ed.)
  42. The Physiology and Biochemistry of Drought Resistance in Plants Proline accumulation,biochemical aspects Stewart G.R;L.G.Paleg(ed.);D.Aspinall(ed.)
  43. Oecologia v.27 Taxonomic and ecological aspects of the distribution of glycinegetaine and related compounds in plants Storey R;N.Ahmad;R.G.Wyn Jones
  44. Plant Physiol v.30 Allantonin and Allantoic acid in tissues and stem exudate from field-grown soybean plants Streeter J.G
  45. Unistat statistical package version 1.2 v.1.2 Uniastat
  46. Plant Physiol v.96 Growth of the maize primary root at low water potentials.Ⅲ.Role of increased proline deposition in osmotic adjustment Voetberg G.S;R.E.Sharp
  47. Transmembrane Ionic Exchanges in Plants.Colloques internationaux.C.N.R.S Ionic and osmotic regulation in plants particularly halophytes Wyn Jones;R.G;R.Storey;A.Pollard;M.Thellier(ed.);J.Dainty(ed.)
  48. Regulation of Cell Membrane Activities in Plants A hypothesis on cytoplasmic osmoregulation Wyn Jones;R.G;R.Storey;R.A.Leigh;N.Ahmad;A.Pollard;E.Marre(ed.)