Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.7.640

The Metabolic Effects of FGF21: From Physiology to Pharmacology  

Song, Parkyong (Department of Convergence Medicine, Pusan National University School of Medicine)
Publication Information
Journal of Life Science / v.30, no.7, 2020 , pp. 640-650 More about this Journal
Abstract
Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF protein family which is highly synthesized in the liver, pancreas, and adipose tissue. Depending on the expression tissue, FGF21 uses endo- or paracrine features to regulate several metabolic pathways including glucose metabolism and energy homeostasis. Different physiologically stressful conditions such as starvation, a ketogenic diet, extreme cold, and mitochondrial dysfunction are known to induce FGF21 synthesis in various tissues to exert either adaptive or defensive mechanisms. More specifically, peroxisome proliferator-activated receptor gamma and peroxisome proliferator-activated receptor alpha control FGF21 expression in adipose tissue and liver, respectively. In addition, the pharmacologic administration of FGF21 has been reported to decrease the body weight and improve the insulin sensitivity and lipoprotein profiles of obese mice and type 2 diabetes patients meaning that FGF21 has attracted huge interest as a therapeutic agent for type 2 diabetes, obesity, and non-alcoholic fatty liver disease. However, understanding FGF21 remains complicated due to the paradoxical condition of its tissue-dependent expression. For example, nutrient deprivation largely increases hepatic FGF21 levels whereas adipose tissue-derived FGF21 is increased under feeding condition. This review discusses the issues of interest that have arisen from existing publications, including the tissue-specific function of FGF21 and its action mechanism. We also summarize the current stage of a clinical trial using several FGF21 analogs.
Keywords
${\beta}$-klotho (KLB); energy metabolism; FGF (Fibroblast growth factor) 21; metabolic disease; thermogenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, K. H., Jeong, Y. T., Oh, H., Kim, S. H., Cho, J. M., Kim, Y. N., Kim, S. S., Kim, D. H., Hur, K. Y., Kim, H. K., Ko, T., Han, J., Kim, H. L., Kim, J., Back, S. H., Komatsu, M., Chen, H., Chan, D. C., Konishi, M., Itoh, N., Choi, C. S. and Lee, M. S. 2013. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83-92.   DOI
2 Kim, S. H., Kim, K. H., Kim, H. K., Kim, M. J., Back, S. H., Konishi, M., Itoh, N. and Lee, M. S. 2015. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress. Diabetologia 58, 809-818.   DOI
3 Kurosu, H., Choi, M., Ogawa, Y., Dickson, A. S., Goetz, R., Eliseenkova, A. V., Mohammadi, M., Rosenblatt, K. P., Kliewer, S. A. and Kuro-o, M. 2007. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282, 26687-26695.   DOI
4 Lewis, J. E., Ebling, F. J. P., Samms, R. J. and Tsintzas, K. 2019. Going back to the biology of FGF21: New insights. Trends Endocrinol. Metab. 30, 491-504.   DOI
5 Liang, Q., Zhong, L., Zhang, J., Wang, Y., Bornstein, S. R., Triggle, C. R., Ding, H., Lam, K. S. and Xu, A. 2014. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63, 4064-4075.   DOI
6 Lin, Z., Tian, H., Lam, K. S., Lin, S., Hoo, R. C., Konishi, M., Itoh, N., Wang, Y., Bornstein, S. R., Xu, A. and Li, X. 2013. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779-789.   DOI
7 Oishi, K., Konishi, M., Murata, Y. and Itoh, N. 2011. Timeimposed daily restricted feeding induces rhythmic expression of Fgf21 in white adipose tissue of mice. Biochem. Biophys. Res. Commun. 412, 396-400.   DOI
8 Owen, B. M., Ding, X., Morgan, D. A., Coate, K. C., Bookout, A. L., Rahmouni, K., Kliewer, S. A. and Mangelsdorf, D. J. 2014. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670-677.   DOI
9 Owen, B. M., Mangelsdorf, D. J. and Kliewer, S. A. 2015. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab. 26, 22-29.   DOI
10 Samms, R. J., Cheng, C. C., Kharitonenkov, A., Gimeno, R. E. and Adams, A. C. 2016. Overexpression of beta-Klotho in adipose tissue sensitizes male mice to endogenous FGF21 and provides protection from diet-induced obesity. Endocrinology 157, 1467-1480.   DOI
11 Song, P., Zechner, C., Hernandez, G., Canovas, J., Xie, Y., Sondhi, V., Wagner, M., Stadlbauer, V., Horvath, A., Leber, B., Hu, M. C., Moe, O. W., Mangelsdorf, D. J. and Kliewer, S. A. 2018. The hormone FGF21 stimulates water drinking in response to ketogenic diet and alcohol. Cell Metab. 27, 1338-1347. e1334.   DOI
12 Stemmer, K., Zani, F., Habegger, K. M., Neff, C., Kotzbeck, P., Bauer, M., Yalamanchilli, S., Azad, A., Lehti, M., Martins, P. J., Muller, T. D., Pfluger, P. T. and Seeley, R. J. 2015. FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice. Diabetologia 58, 2414-2423.   DOI
13 Weng, Y., Ishino, T., Sievers, A., Talukdar, S., Chabot, J. R., Tam, A., Duan, W., Kerns, K., Sousa, E., He, T., Logan, A., Lee, D., Li, D., Zhou, Y., Bernardo, B., Joyce, A., Kavosi, M., O'Hara, D. M., Clark, T., Guo, J., Giragossian, C., Stahl, M., Calle, R. A., Kriz, R., Somers, W. and Lin, L. 2018. Glyco-engineered long acting FGF21 variant with optimal pharmaceutical and pharmacokinetic properties to enable weekly to twice monthly subcutaneous dosing. Sci. Rep. 8, 4241.   DOI
14 Talukdar, S., Zhou, Y., Li, D., Rossulek, M., Dong, J., Somayaji, V., Weng, Y., Clark, R., Lanba, A., Owen, B. M., Brenner, M. B., Trimmer, J. K., Gropp, K. E., Chabot, J. R., Erion, D. M., Rolph, T. P., Goodwin, B. and Calle, R. A. 2016. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 23, 427-440.   DOI
15 Tan, B. K., Hallschmid, M., Adya, R., Kern, W., Lehnert, H. and Randeva, H. S. 2011. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes 60, 2758-2762.   DOI
16 Tyynismaa, H., Carroll, C. J., Raimundo, N., Ahola-Erkkila, S., Wenz, T., Ruhanen, H., Guse, K., Hemminki, A., Peltola-Mjosund, K. E., Tulkki, V., Oresic, M., Moraes, C. T., Pietilainen, K., Hovatta, I. and Suomalainen, A. 2010. Mitochondrial myopathy induces a starvation-like response. Hum. Mol. Genet. 19, 3948-3958.   DOI
17 Kwon, M. M., O'Dwyer, S. M., Baker, R. K., Covey, S. D. and Kieffer, T. J. 2015. FGF21-mediated improvements in glucose clearance require uncoupling protein 1. Cell Rep. 13, 1521-1527.   DOI
18 Goetz, R., Ohnishi, M., Kir, S., Kurosu, H., Wang, L., Pastor, J., Ma, J., Gai, W., Kuro-o, M., Razzaque, M. S. and Mohammadi, M. 2012. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J. Biol. Chem. 287, 29134-29146.   DOI
19 Kharitonenkov, A. and Shanafelt, A. B. 2009. FGF21: a novel prospect for the treatment of metabolic diseases. Curr. Opin. Investig. Drugs 10, 359-364.
20 Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., Gromada, J., Brozinick, J. T., Hawkins, E. D., Wroblewski, V. J., Li, D. S., Mehrbod, F., Jaskunas, S. R. and Shanafelt, A. B. 2005. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627-1635.   DOI
21 Potthoff, M. J., Inagaki, T., Satapati, S., Ding, X., He, T., Goetz, R., Mohammadi, M., Finck, B. N., Mangelsdorf, D. J., Kliewer, S. A. and Burgess, S. C. 2009. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA. 106, 10853-10858.   DOI
22 Laeger, T., Albarado, D. C., Burke, S. J., Trosclair, L., Hedgepeth, J. W., Berthoud, H. R., Gettys, T. W., Collier, J. J., Munzberg, H. and Morrison, C. D. 2016. Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Rep. 16, 707-716.   DOI
23 Markan, K. R., Naber, M. C., Ameka, M. K., Anderegg, M. D., Mangelsdorf, D. J., Kliewer, S. A., Mohammadi, M. and Potthoff, M. J. 2014. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63, 4057-4063.   DOI
24 Mu, J., Pinkstaff, J., Li, Z., Skidmore, L., Li, N., Myler, H., Dallas-Yang, Q., Putnam, A. M., Yao, J., Bussell, S., Wu, M., Norman, T. C., Rodriguez, C. G., Kimmel, B., Metzger, J. M., Manibusan, A., Lee, D., Zaller, D. M., Zhang, B. B., DiMarchi, R. D., Berger, J. P. and Axelrod, D. W. 2012. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 61, 505-512.   DOI
25 Veniant, M. M., Sivits, G., Helmering, J., Komorowski, R., Lee, J., Fan, W., Moyer, C. and Lloyd, D. J. 2015. Pharmacologic effects of FGF21 are independent of the "Browning" of white adipose tissue. Cell Metab. 21, 731-738.   DOI
26 Wu, A. L., Kolumam, G., Stawicki, S., Chen, Y., Li, J., Zavala-Solorio, J., Phamluong, K., Feng, B., Li, L., Marsters, S., Kates, L., van Bruggen, N., Leabman, M., Wong, A., West, D., Stern, H., Luis, E., Kim, H. S., Yansura, D., Peterson, A. S., Filvaroff, E., Wu, Y. and Sonoda, J. 2011. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci. Transl. Med. 3, 113ra126.   DOI
27 Xu, J., Lloyd, D. J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., Vonderfecht, S., Hecht, R., Li, Y. S., Lindberg, R. A., Chen, J. L., Jung, D. Y., Zhang, Z., Ko, H. J., Kim, J. K. and Veniant, M. M. 2009. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250-259.   DOI
28 Adams, A. C., Cheng, C. C., Coskun, T. and Kharitonenkov, A. 2012. FGF21 requires betaklotho to act in vivo. PLoS One 7, e49977.   DOI
29 Ameka, M., Markan, K. R., Morgan, D. A., BonDurant, L. D., Idiga, S. O., Naber, M. C., Zhu, Z., Zingman, L. V., Grobe, J. L., Rahmouni, K. and Potthoff, M. J. 2019. Liver derived FGF21 maintains core body temperature during acute cold exposure. Sci. Rep. 9, 630.   DOI
30 Bookout, A. L., de Groot, M. H., Owen, B. M., Lee, S., Gautron, L., Lawrence, H. L., Ding, X., Elmquist, J. K., Takahashi, J. S., Mangelsdorf, D. J. and Kliewer, S. A. 2013. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147-1152.   DOI
31 Chartoumpekis, D. V., Habeos, I. G., Ziros, P. G., Psyrogiannis, A. I., Kyriazopoulou, V. E. and Papavassiliou, A. G. 2011. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol. Med. 17, 736-740.   DOI
32 Coate, K. C., Hernandez, G., Thorne, C. A., Sun, S., Le, T. D. V., Vale, K., Kliewer, S. A. and Mangelsdorf, D. J. 2017. FGF21 is an exocrine pancreas secretagogue. Cell Metab. 25, 472-480.   DOI
33 De Sousa-Coelho, A. L., Relat, J., Hondares, E., Perez-Marti, A., Ribas, F., Villarroya, F., Marrero, P. F. and Haro, D. 2013. FGF21 mediates the lipid metabolism response to amino acid starvation. J. Lipid Res. 54, 1786-1797.   DOI
34 Desai, B. N., Singhal, G., Watanabe, M., Stevanovic, D., Lundasen, T., Fisher, F. M., Mather, M. L., Vardeh, H. G., Douris, N., Adams, A. C., Nasser, I. A., FitzGerald, G. A., Flier, J. S., Skarke, C. and Maratos-Flier, E. 2017. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol. Metab. 6, 1395-1406.   DOI
35 Diaz-Delfin, J., Hondares, E., Iglesias, R., Giralt, M., Caelles, C. and Villarroya, F. 2012. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology 153, 4238-4245.   DOI
36 Ding, X., Boney-Montoya, J., Owen, B. M., Bookout, A. L., Coate, K. C., Mangelsdorf, D. J. and Kliewer, S. A. 2012. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 16, 387-393.   DOI
37 Fisher, F. M., Chui, P. C., Antonellis, P. J., Bina, H. A., Kharitonenkov, A., Flier, J. S. and Maratos-Flier, E. 2010. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781-2789.   DOI
38 Fisher, F. M., Kim, M., Doridot, L., Cunniff, J. C., Parker, T. S., Levine, D. M., Hellerstein, M. K., Hudgins, L. C., Maratos-Flier, E. and Herman, M. A. 2017. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol. Metab. 6, 14-21.   DOI
39 Samms, R. J., Smith, D. P., Cheng, C. C., Antonellis, P. P., Perfield, J. W., 2nd, Kharitonenkov, A., Gimeno, R. E. and Adams, A. C. 2015. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 11, 991-999.   DOI
40 Shenoy, V. K., Beaver, K. M., Fisher, F. M., Singhal, G., Dushay, J. R., Maratos-Flier, E. and Flier, S. N. 2016. Elevated serum fibroblast growth factor 21 in humans with acute pancreatitis. PLoS One 11, e0164351.   DOI
41 Gaich, G., Chien, J. Y., Fu, H., Glass, L. C., Deeg, M. A., Holland, W. L., Kharitonenkov, A., Bumol, T., Schilske, H. K. and Moller, D. E. 2013. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333-340.   DOI
42 Ge, X., Chen, C., Hui, X., Wang, Y., Lam, K. S. and Xu, A. 2011. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J. Biol. Chem. 286, 34533-34541.   DOI
43 Giralt, M., Gavalda-Navarro, A. and Villarroya, F. 2015. Fibroblast growth factor-21, energy balance and obesity. Mol. Cell. Endocrinol. 418 Pt 1, 66-73.   DOI
44 Hill, C. M., Laeger, T., Dehner, M., Albarado, D. C., Clarke, B., Wanders, D., Burke, S. J., Collier, J. J., Qualls-Creekmore, E., Solon-Biet, S. M., Simpson, S. J., Berthoud, H. R., Munzberg, H. and Morrison, C. D. 2019. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism. Cell Rep. 27, 2934-2947. e2933.   DOI
45 BonDurant, L. D., Ameka, M., Naber, M. C., Markan, K. R., Idiga, S. O., Acevedo, M. R., Walsh, S. A., Ornitz, D. M. and Potthoff, M. J. 2017. FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms. Cell Metab. 25, 935-944. e934.   DOI
46 Adams, A. C., Yang, C., Coskun, T., Cheng, C. C., Gimeno, R. E., Luo, Y. and Kharitonenkov, A. 2012. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2, 31-37.   DOI
47 Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M. and Evans, R. M. 2013. PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557-566.   DOI
48 Badman, M. K., Koester, A., Flier, J. S., Kharitonenkov, A. and Maratos-Flier, E. 2009. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150, 4931-4940.   DOI
49 Badman, M. K., Pissios, P., Kennedy, A. R., Koukos, G., Flier, J. S. and Maratos-Flier, E. 2007. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426-437.   DOI
50 Berglund, E. D., Li, C. Y., Bina, H. A., Lynes, S. E., Michael, M. D., Shanafelt, A. B., Kharitonenkov, A. and Wasserman, D. H. 2009. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150, 4084-4093.   DOI
51 Chau, M. D., Gao, J., Yang, Q., Wu, Z., and Gromada, J. 2010. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc. Natl. Acad. Sci. USA. 107, 12553-12558.   DOI
52 Collaborators, G. B. D. O., Afshin, A., Forouzanfar, M. H., Reitsma, M. B., Sur, P., Estep, K., Lee, A., Marczak, L., Mokdad, A. H., Moradi-Lakeh, M., Naghavi, M., Salama, J. S., Vos, T., Abate, K. H., Abbafati, C., Ahmed, M. B., Al-Aly, Z., Alkerwi, A., Al-Raddadi, R., Amare, A. T., Amberbir, A., Amegah, A. K., Amini, E., Amrock, S. M., Anjana, R. M., Arnlov, J., Asayesh, H., Banerjee, A., Barac, A., Baye, E., Bennett, D. A., Beyene, A. S., Biadgilign, S., Biryukov, S., Bjertness, E., Boneya, D. J., Campos-Nonato, I., Carrero, J. J., Cecilio, P., Cercy, K., Ciobanu, L. G., Cornaby, L., Damtew, S. A., Dandona, L., Dandona, R., Dharmaratne, S. D., Duncan, B. B., Eshrati, B., Esteghamati, A., Feigin, V. L., Fernandes, J. C., Furst, T., Gebrehiwot, T. T., Gold, A., Gona, P. N., Goto, A., Habtewold, T. D., Hadush, K. T., Hafezi-Nejad, N., Hay, S. I., Horino, M., Islami, F., Kamal, R., Kasaeian, A., Katikireddi, S. V., Kengne, A. P., Kesavachandran, C. N., Khader, Y. S., Khang, Y. H., Khubchandani, J., Kim, D., Kim, Y. J., Kinfu, Y., Kosen, S., Ku, T., Defo, B. K., Kumar, G. A., Larson, H. J., Leinsalu, M., Liang, X., Lim, S. S., Liu, P., Lopez, A. D., Lozano, R., Majeed, A., Malekzadeh, R., Malta, D. C., Mazidi, M., McAlinden, C., McGarvey, S. T., Mengistu, D. T., Mensah, G. A., Mensink, G. B. M., Mezgebe, H. B., Mirrakhimov, E. M., Mueller, U. O., Noubiap, J. J., Obermeyer, C. M., Ogbo, F. A., Owolabi, M. O., Patton, G. C., Pourmalek, F., Qorbani, M., Rafay, A., Rai, R. K., Ranabhat, C. L., Reinig, N., Safiri, S., Salomon, J. A., Sanabria, J. R., Santos, I. S., Sartorius, B., Sawhney, M., Schmidhuber, J., Schutte, A. E., Schmidt, M. I., Sepanlou, S. G., Shamsizadeh, M., Sheikhbahaei, S., Shin, M. J., Shiri, R., Shiue, I., Roba, H. S., Silva, D. A. S., Silverberg, J. I., Singh, J. A., Stranges, S., Swaminathan, S., Tabares-Seisdedos, R., Tadese, F., Tedla, B. A., Tegegne, B. S., Terkawi, A. S., Thakur, J. S., Tonelli, M., Topor-Madry, R., Tyrovolas, S., Ukwaja, K. N., Uthman, O. A., Vaezghasemi, M., Vasankari, T., Vlassov, V. V., Vollset, S. E., Weiderpass, E., Werdecker, A., Wesana, J., Westerman, R., Yano, Y., Yonemoto, N., Yonga, G., Zaidi, Z., Zenebe, Z. M., Zipkin, B. and Murray, C. J. L. 2017. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13-27.   DOI
53 Douris, N., Stevanovic, D. M., Fisher, F. M., Cisu, T. I., Chee, M. J., Nguyen, N. L., Zarebidaki, E., Adams, A. C., Kharitonenkov, A., Flier, J. S., Bartness, T. J. and Maratos-Flier, E. 2015. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156, 2470-2481.   DOI
54 Dutchak, P. A., Katafuchi, T., Bookout, A. L., Choi, J. H., Yu, R. T., Mangelsdorf, D. J. and Kliewer, S. A. 2012. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148, 556-567.   DOI
55 Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz, R., Mohammadi, M., Esser, V., Elmquist, J. K., Gerard, R. D., Burgess, S. C., Hammer, R. E., Mangelsdorf, D. J. and Kliewer, S. A. 2007. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415-425.   DOI
56 Holland, W. L., Adams, A. C., Brozinick, J. T., Bui, H. H., Miyauchi, Y., Kusminski, C. M., Bauer, S. M., Wade, M., Singhal, E., Cheng, C. C., Volk, K., Kuo, M. S., Gordillo, R., Kharitonenkov, A. and Scherer, P. E. 2013. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17, 790-797.   DOI
57 Hondares, E., Rosell, M., Gonzalez, F. J., Giralt, M., Iglesias, R. and Villarroya, F. 2010. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11, 206-212.   DOI
58 Huang, Z., Zhong, L., Lee, J. T. H., Zhang, J., Wu, D., Geng, L., Wang, Y., Wong, C. M. and Xu, A. 2017. The FGF21-CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to Type 2 immunity. Cell Metab. 26, 493-508. e494.   DOI
59 Fisher, F. M. and Maratos-Flier, E. 2016. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 78, 223-241.   DOI
60 Fisher, F. M., Kleiner, S., Douris, N., Fox, E. C., Mepani, R. J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J. S., Maratos-Flier, E. and Spiegelman, B. M. 2012. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271-281.   DOI
61 Foltz, I. N., Hu, S., King, C., Wu, X., Yang, C., Wang, W., Weiszmann, J., Stevens, J., Chen, J. S., Nuanmanee, N., Gupte, J., Komorowski, R., Sekirov, L., Hager, T., Arora, T., Ge, H., Baribault, H., Wang, F., Sheng, J., Karow, M., Wang, M., Luo, Y., McKeehan, W., Wang, Z., Veniant, M. M. and Li, Y. 2012. Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci. Transl. Med. 4, 162ra153.   DOI
62 Fon Tacer, K., Bookout, A. L., Ding, X., Kurosu, H., John, G. B., Wang, L., Goetz, R., Mohammadi, M., Kuro-o, M., Mangelsdorf, D. J. and Kliewer, S. A. 2010. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050-2064.   DOI
63 Kharitonenkov, A., Dunbar, J. D., Bina, H. A., Bright, S., Moyers, J. S., Zhang, C., Ding, L., Micanovic, R., Mehrbod, S. F., Knierman, M. D., Hale, J. E., Coskun, T. and Shanafelt, A. B. 2008. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J. Cell. Physiol. 215, 1-7.   DOI
64 Jiang, S., Yan, C., Fang, Q. C., Shao, M. L., Zhang, Y. L., Liu, Y., Deng, Y. P., Shan, B., Liu, J. Q., Li, H. T., Yang, L., Zhou, J., Dai, Z., Liu, Y. and Jia, W. P. 2014. Fibroblast growth factor 21 is regulated by the IRE1alpha-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J. Biol. Chem. 289, 29751-29765.   DOI
65 Johnson, C. L., Mehmood, R., Laing, S. W., Stepniak, C. V., Kharitonenkov, A. and Pin, C. L. 2014. Silencing of the Fibroblast growth factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1. Am. J. Physiol. Endocrinol. Metab. 306, E916-928.   DOI
66 Katafuchi, T., Holland, W. L., Kollipara, R. K., Kittler, R., Mangelsdorf, D. J. and Kliewer, S. A. 2018. PPARgamma-K107 SUMOylation regulates insulin sensitivity but not adiposity in mice. Proc. Natl. Acad. Sci. USA. 115, 12102-12111.   DOI