Browse > Article
http://dx.doi.org/10.9721/KJFST.2013.45.5.590

Physiological Changes of Saccharomyces cerevisiae by High Voltage Pulsed Electric Field Treatments  

Park, Hee Ran (Department of Traditional Food Industry, JeonJu University)
Yoon, So Jung (Department of Traditional Food Industry, JeonJu University)
Park, Han-Sul (Department of Traditional Food Industry, JeonJu University)
Shin, Jung-Kue (Department of Korean Cuisine, JeonJu University)
Publication Information
Korean Journal of Food Science and Technology / v.45, no.5, 2013 , pp. 590-597 More about this Journal
Abstract
High voltage pulsed electric fields (PEF) treatment is a promising non-thermal processing technology that can replace or partially substitute for thermal processes. The aim of this research was to investigate the microbial inactivation mechanisms by PEF treatment in terms of physiological changes to Saccharomyces cerevisiae. PEF was applied at the electric field strength of 50 kV/cm, treatment time of 56 ${\mu}s$ and temperature of $40^{\circ}C$. The microbial cells treated with PEF showed loss of salt tolerance on the cell membrane and collapse of the relative pH gradient on in-out of cells. Cell death or injury resulted from the breakdown of homeostasis, decreased $H^+$-ATPase activity, and loss of glycolysis activity.
Keywords
high voltage pulsed electric fields; physiological changes; inactivation mechanisms; Saccharomyces cerevisiae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Castro AJ, Barbosa-Canovas GV, Swanson BG. Microbial inactivation of foods by pulsed electric fields. J. Food Process. Pres. 17: 47-73 (1993)   DOI   ScienceOn
2 Qin BL, Pothakamury UR, Vega H, Martin O, Barbosa-Canovas GC, Swanson BG. Food pasteurization using high-intensity pulsed electric fields. Food Technol.-Chicago 49: 55-60 (1995)
3 Leistner G, Gorris LGM. Food preservation by combined processes. FLAIR Final Report, EUR 15576 EN, 100 pp. Brussels: European Commission, DG (1994)
4 Monfort S, Saldana G, Condon S, Raso J, Alvarez I. Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiol. 30: 393-399 (2012)   DOI   ScienceOn
5 Zhu Z, Bals O, Grimi N, Ding L, Vorobiev E. Qualitative characteristics and dead-end ultrafiltration of chicory juice obtained from pulsed electric field treated chicories. Ind. Crop. Prod. 46: 8-14 (2013)   DOI   ScienceOn
6 Puertolas E, Cregenzan O, Luengo E, Alvarez I, Raso J. Pulsed electric field assisted extraction of anthocyanins from purplefleshe potato. Food Chem. 136: 1330-1336 (2013)   DOI   ScienceOn
7 Mhemdi H, Grimi N, Bals O, Lebovka NI, Vorobiev E. Effect of apparent density of sliced food particles on the efficiency of pulsed electric field treatment. Innov. Food Sci. Emerg. 18: 115-119 (2013)   DOI   ScienceOn
8 Turk MF, Vorobiev E, Baron A. Improving apple jucie expression and quality by pulsed electric field on an industrial scale. LWTFood Sci. Technol. 49: 245-250 (2012)
9 Knorr D, Geulen M, Grahl T, Sitzmann W. Food application of high electric field pulses. Trend. Food Sci. Tech. 5: 71-75 (1994)   DOI   ScienceOn
10 Pothakamury UR. Preservation of food by nonthermal processes. PhD thesis, Washington State University, Pullman, WA, USA (1995)
11 Harrison SL. High intensity pulsed electric field and high hydrostatic pressure processing of apple juice. PhD thesis, Washington State University, Pullman, WA, USA (1996)
12 Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys. J. 14: 881-899 (1974)   DOI   ScienceOn
13 Marx G, Moody A, Bermudez-Aguirre D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and thermo-sonication. Int. J. Food Microbiol. 151: 327-337 (2011)   DOI   ScienceOn
14 Gallo LI, Pilosof AMR, Jagus RJ. Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J. Food Eng. 79: 188-193 (2007)   DOI   ScienceOn
15 Delorme E. Transformation of Saccharomyces cerevisiae by electroporation. Appl. Environ. Microb. 55: 2242-2246 (1989)
16 Calderon-Miranda ML, Barbosa-Canovas GV, Swanson BG. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed mil. Int. J. Food Microbiol. 51: 31-38 (1999)   DOI   ScienceOn
17 Slavik J. Intracellular pH of yeast cells measured with fluorescent probe. FEBS Lett. 140: 22-26 (1982)   DOI   ScienceOn
18 Bender GR, Marquis RE. Membrane ATPases and acid tolerance of Actinomyces viscous and Lactobacillus casei. Appl. Environ. Microb. 53: 2124-2128 (1987)
19 Hong SI, Pyun YR. Membrance damage and enzyme inactivation of Lactobacillus plantarum by high pressure $CO_{2}$ treatment. Int. J. Food Microbiol. 63: 19-28 (2001)   DOI   ScienceOn
20 Bender GR, Sutton SVW, Marquis RE. Acid tolerance, proton permeabilities and membrane ATPases of oral streptococci. Infect. Immun. 53: 331-338 (1986)
21 Poole RK. The isolation of membranes from bacteria. vol. 19, pp. 109-122. In: Biomembrane Protocols. Graham J, Higgins J (eds). Humana Press Inc., New York, NY, USA (1993)
22 Simpson RK, Whittington R, Earnshaw RG, Russell NJ. Pulsed high electric field causes 'all or nothing' membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not a primary target. Int. J. Food Microbiol. 48: 1-10 (1999)   DOI   ScienceOn
23 Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66: 375-400 (1925)
24 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
25 Markwell MAK, Hass SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210 (1978)   DOI   ScienceOn
26 Humble MW, King A, Phillips I. APIZYM: a simple rapid system for the detection of bacterial enzymes. J. Clin. Pathol. 30: 275-277 (1977)   DOI
27 Przybylski KS, Witter LD. Injury and recovery of Escherichia coli after sublethal acidification. Appl. Environ. Microb. 37: 261-265 (1979)
28 Iandolo JJ, Ordal ZJ. Repair of thermal injury of Staphylococcus aureus. J. Bacteriol. 91: 134-142 (1966)
29 Hurst A. Bacterial injury: A review. Can. J. Microbiol. 23: 935-944 (1977)   DOI   ScienceOn
30 Shin JK, Pyun YR. Inactivation of Lactobacillus plantarum by pulsed microwave irradiation. J. Food Sci. 62: 163-166 (1997)   DOI   ScienceOn
31 Mitchell P. Moyle J. Osmotic structure and function in bacteria. Symp. Soc. Gen. Microbiol. 6: 150-180 (1956)
32 Pina-Perez MC, Rodrigo D, Lopez AM. Sub-lethal damage in Cronobacter sakazakii subsp. sakazakii cells after different pulsed electric field treatments in infant formula milk. Food Control 20: 1145-1150 (2009)   DOI   ScienceOn
33 Zhao W, Yang R, Shen X, Zhang S, Chen X. Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields. Food Control 32: 6-12 (2013)   DOI   ScienceOn
34 Rozes N, Peres C. Effect of oleuropein and sodium chloride on viability and metabolism of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 45: 839-843 (1996)   DOI
35 Dreyfuss HS, Chipley JR. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl. Environ. Microb. 39: 13-16 (1980)
36 Garcia MJ, Rios G, Ali R, Belles JM, Serrano R. Comparative physiology of sal tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 143: 1125-1131 (1997)   DOI   ScienceOn
37 Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 296: 8792-8796 (1994)
38 Somolinos M, Manas P, Condon S, Pagan R, Garcia D. Recovery of Saccharomyces cerevisiae sublethally injured cells after pulsed electric fields. Int. J. Food Microbiol. 125: 352-356 (2008)   DOI   ScienceOn
39 Khalil H, Villota R. Comparative study on injury and recovery of Staphylococcus aureus using microwaves and conventional heating. J. Food Protect. 51: 181-186 (1988)
40 Hong SI. Inactivation of Lactobacillus plantarum by high pressure carbon dioxide. PhD thesis, Yonsei University, Seoul, Korea (1997)
41 Albert SG. Biochemical aspects of yeasts. pp. 33-46. In: Yeast Technology. Reed G, Peppler HJ (eds). Westport, CN, USA (1973)
42 Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125-147 (1993)   DOI
43 Tanino T, Sato S, Oshige M, Ohshima T. Analysis of the stress response of yeast Saccharomyces cerevisiae toward pulsed electric field. J. Electrostat. 70: 212-216 (2012)   DOI   ScienceOn
44 Foster JW, Cowan RM, Magg TA. Rupture of bacteria by explosive decompression. J. Bacteriol. 83: 330-334 (1962)
45 Jung S, Lowe SE, Hollingsworth RI, Zeikus JG. Sarcina ventriculi synthesizes very long chain dicarboxylic acids in response to different forms of environmental stress. J. Biol. Chem. 268: 2828-2835 (1993)
46 Booth IR. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49: 359-378 (1985)
47 Kobayashi H, Suzuki T, Unemoto T. Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton translocating ATPase. J. Biol. Chem. 261: 627-630 (1986)
48 Kashket ER. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerence. FEMS Microbiol. Lett. 46: 233-244 (1987)   DOI   ScienceOn
49 Hutkins RW, Nannen NL. pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354-2365 (1993)   DOI   ScienceOn
50 Futai M, Kanazawa H. Structure and function of proton-traslocating adenosine triphosphatase ($F_{0}F_{1}$) biochemical and molecular biological approaches. Microbiol. Rev. 47: 285-312 (1983)
51 Schneider E, Altendorf K. Bacterial adenosine 5'-triphosphate synthase ($F_{0}F_{1}$): purification and reconstitution of $F_{0}$ complexs and biochemical and functional characterization of their subunits. Microbiol. Rev. 51: 477-497 (1987)
52 Zhao W, Yang R, Zhang HQ. Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends Food Sci. Tech. 27: 83-96 (2012)   DOI   ScienceOn
53 Ho SY, Mittal GS, Cross JD. Effects of high field electric pulses on the activity of selected enzymes. J. Food Eng. 31: 69-84 (1997)   DOI   ScienceOn
54 Shin JK. Inactivation of Saccharmyces cerevisiae by high voltage pulsed electric fields treatment. PhD thesis, Yonsei University, Seoul, Korea (2000)
55 Shin JK. Nonthermal sterilization of foods using high power electrical energy (D10-3). In: 2013 Annual Meeting of Korean Society of Food Science and Technology. August 28-30, Cheonan Art Center, Cheonan, Korea. The Korean Society of Food Science and Technology, Seoul, Korea (2013)