• Title/Summary/Keyword: 살조 물질

Search Result 28, Processing Time 0.021 seconds

유해적조생물 Cochlodinium polykrikoides를 살멸하는 Brachybacterium sp. SY-97의 분리 및 특성

  • Kim, Yun-Suk;Jeong, Seong-Yun;Lee, Dae-Seong;Lee, Sang-Jun;Lee, Won-Jae
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.293-296
    • /
    • 2008
  • 적조발생 해역인 울진 연안의 해수에서 분리한 100여종의 해양미생물 중 8 균주가 C. polykrikoides에 대해 살조활성을 나타내었으며, 이 중 살조활성이 가장 우수한 Brachybacterium sp. SY-97을 선별하였다. Brachybacterium sp. SY-97의 최적 배양조건은 30$^{\circ}C$, pH 7.0, 2.0% NaCl 농도였다. Brachybacterium sp. SY-97은 C. polykrikoides를 살조시킨 후 생성되는 EOM을 이용하여 성장하며, 유도기를 거쳐 대수증식기에 살조물질을 활발히 생산하는 것으로 판단된다. 0.2 $\mu$m의 Cell Culture Insert를 삽입한 2조 배양계를 이용하여 Brachybacterium sp. SY-97의 살조 유형을 조사한 결과, Brachybacterium sp. SY-97은 0.2 $\mu$m filter에 의해 C. polykrikoides와 격리된 상태에서도 C. polykrikoides를 살조시켜 직접 공격형이 아니라 세포외로 물질을 분비하여 살조시키는 살조인자 분비형으로 밝혀졌다. Brachybacterium sp. SY-97의 배양여과액의 첨가 농도별 살조활성을 측정한 결과, 15%의 경우 C. polykrikoides의 개체수는 급격히 감소하여 12시간 후에 100% 살조되었고, 10%의 경우 15시간 후에 모두 살조되었고, 5%의 경우 18시간 후에 control에 비해 90% 이상 살조 되었다.

  • PDF

Isolation of Marine Bacteria Killing Red Tide Microalgae -III. Algicidal Effects of Marine Bacterium, Micrococcus sp. LG-5 against the Harmful Dinoflagellate, Cochlodinium polykrikoides- (적조생물 살조세균 탐색 -III. 유해성 적조생물 Cochlodinium polykrikoides에 대한 Micrococcus sp. LG-5의 살조 효과-)

  • JEONG Seong-Youn;PARK Young-Tae;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.331-338
    • /
    • 2000
  • The algicidal effects of marine bacteria were investigated and a strain, which had the strongest algicidal activity against the harmful dinoflagellate, Cochiodinim polykrikoides was selected. The bacterium was isolated in seawater during the period of blooming of C. polykrikoides in Masan Bay. This algicidal bacterium was identified as Micrococcus sp. LG-5 by means of morphological and biochemical tests. The optimal culture conditions of Micrococcus sp, LG-5 were $25^{\circ}C,\;pH 7.0\;and\;3.0{\%}$ NaCl concentration. The algicidal activity of Micrococcus sp. LG-5 was significantly increased to maximum value in the late of logarithmic phase of cell cuture. In addition, the culture filtrate ($pore size,\;0.1{\mu}m$) of Microcoocus sp. LG-5 showed strong algicidal effects. The cell numbers of C. polykikoides were decreased from $1.2{\times}10^4 cells/ml\;to\;less\;than\;2{\times}10^3\;cells/ml$ within 3, 6, 30 hours at the concentrations of culture filtrate $10{\%},\;5{\%}\;and\;1{\%}$, respectively. These results indicated that the algicidal effect was mediated by certain substances released from Microooccus sp. LG-5.

  • PDF

Isolation of Marine Bacteria Killing Red Tide Microalgae -IV. Characteristics of Algicidal Substances, Produced from Micrococcus sp. LG-5 and the Effects on Marine Organisms- (적조생물 살조세균 탐색 -IV. 살조세균 Micrococcus sp. LG-5가 생산하는 살조물질의 특성과 해양생물에 미치는 영향-)

  • JEONG Seong-Youn;PARK Young-Tae;KIM Mu-Chan;CHOI Seok-Cheol;SEONG Hee-Kyung;KIM Jai-Young;KIM Tae-Un;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • An algicidal bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides was isolated. The optimal conditions for the highest algicidal activity of bacterial culture filtrate showed in the range of $20{\~}30^{\circ}C$, at pH 7.0 and $3.0{\%}$ of NaCl concentration. In addition, $IC_(50)(mean of 50{\%} inhibitory concentration)$ of the culture filtrate against C. polykrikoides after incubation of 5 days was $0.482{\%}$. To investigate heat and pH stability of the culture filtrate of Micrococcus sp. LG-5, the culture filtrate ($pore size, 0.1 {\mu}m$) was heated to $121^{\circ}C for 15 min$ and adjusted pH from 2.0 to 10.0. There were no significant changes in algicidal activity by heat treatment and the pH change between pH from 5.0 to 10.0. The algicidal substances produced from Micrococcus sp. LG-5 were mainly detected in the fraction of $10,000{\~}1,000$ MWCO (molecular weight cut-off). The culture filtrate of Micrococous sp. LG-5 showed antimicrobial activity against Enterococcus faecalis, Escheiichia coli, Uebsiella pneunioniae and Vibrio altinolyticus, but did not show against Pseudomonas aeminosa, P. Buorescens, Salmonella typhi, Staphylococcus aureus, V. cholerae and V parahaemolyicus. The culture filtrate of Micrococcus sp. LG-5 was examined against 16 phytoplankton species and showed the algicidal activity against Ajexandzium tuarense, Eutreptiella Drnnastin, Gymnodinium catenatum, G. mikimotoi, G. sanguineum, eyodinium impuaicum, Heterocapsa triquetra, Heterosipa akashiwo, Prorocentrum micans and Pyraminonas sp.. However no algicidal effects of Micrococcus sp. LG-5 were observed against Chlamydomonas sp., Cylindrotheoa closterium, P. mininum, P. triestimum, Pseudonieschia sp. and Sczipuiella trochoidea. On the other hand, algicidal activity on the tested marinelivefood was not detected except for Isochrysis galbana. In addition, physiological responses of cultured olive flounder (Paralichthys oliraceus) exposed to $1 and 10{\%}$ of the culture filtrate of Micrococcus sp. LG-5 were measured. There were no clear changes in AST, GGT, creatinine, urea, total cholesterol, total protein, albumine, $Mg^(+2), Ca^(+2), Na^+, K^+, and Cl^-$. These results indicate that olive flounders were not affected when they were exposed to the culture filtrate of Micrococcus sp. LG-5.

  • PDF

Isolation and Characterization of Algicidal Bacteria KY1 (살조세균 KY1의 분리와 특성조사)

  • PARK Keun-Young;KIM Mi-Ryung;KIM Sung-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.452-457
    • /
    • 1999
  • Algicidal bacteria were isolated from the mud of south coastal sea of Korean peninsula and screened to evaluate algicidal activity on Cochlodinium polykrikoides. The optimum condition for the development of highest algicidal activity was determined, The optimum sodium chloride concentration for algicidal activity of isolated algicidal bacteria was $3\%$. The optimum temperature, pH and culture time for the highest algicidal activity were $30^{\circ}C$, pH 7 and above 24 hr, respectively. The algicidal activity were significantly increased at the stationary phase of the cell growth and continuously increased up to maximum at the death phase, probably due to the release of algicidal substance by cell Iysis. The effect of zinc ion addition on algicidal activity, was observed and indicated that the substance requires zinc for its activity. The candidate for the algicidal substance may be $\alpha$-mannosidase.

  • PDF

The Algicidal Activity of Pseudoalteromonas sp. NH-12 against the Toxic Dinoflagellate Alexandrium catenella (유독성 와편모류 Alexandrium catenella에 대한 Pseudoalteromonas sp. NH-12의 살조능)

  • Jeoung, Nam-Ho;Son, Hong-Joo;Jeong, Seong-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.175-184
    • /
    • 2012
  • BACKGROUND: The aim of this study was to isolate and identify algicidal bacterium that tends to kill the toxic dinoflagellate Alexandrium catenella, and to determine the algicidal activity. METHODS AND RESULTS: Among of four algicidal bacteria isolated in this study, NH-12 isolate was the strongest algicidal activity against A. catenella. NH-12 isolate was identified on the basis of biochemical characteristics and analysis of 16S rRNA gene sequences. The isolate showed 97.67% homology with Pseudoalteromonas prydzensis ACAM $620^T$ (U85855), and was designated Pseudoalteromonas sp. NH-12. The optimal culture conditions of this isolate were $25^{\circ}C$, initial pH 8.0, and 3.0% (w/v) NaCl concentration. The algicidal activity of NH-12 was significantly increased to maximum value in the late of logarithmic phase of bacterial culture. As a result of 'cell culture insert' experiment, NH-12 is assumed to produce secondary metabolites, as an indirect attacker. When 10% culture filtrate of NH-12 was applied to A. catenella, over 99% of algal cells were destroyed within 24 h. In addition, the killing effects were increased in dose and time dependent manners. CONCLUSION(S): Taken together, our results suggest that Pseudoalteromonas sp. NH-12 could be a candidate for controlling of toxic algal blooms.

Characterization of a Novel Alga-Lytic Bacterium, Acidovorax temperans AK-05, Isolated from an Eutrophic Lake for Degradation of Anabaena cylindrica (부영양 호수에서 분리한 Acidovorax temperans AK-05의 Anabaena cylindrica 분해 특성)

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.241-247
    • /
    • 2004
  • Isolation and identification of alga-lytic bacteria were carried out. Fifteen isolates of alga-lytic bacteria were screened by the double layer method using A. cylindrica NIES-19 as a sole nutrient and four isolates among them were compared with their alga-lytic activity. The isolate AK-05 exhibiting the highest alga-lytic activity was identified as Acidovorax temperans base on its 16S rDNA sequence. The culture supernatant of the isolate AK-05 was reliable for the alga-lytic. Alga-lytic activity assays of culture supernatant revealed that the major substances for alga-lytic activity were non-proteins and heat stable. The highest alga-Iytic activity was practical under alkaline conditions and at 25${\sim}$$30^{\circ}C$. It is indicating an advantage for the application of water blooms by cyanobacteria in eutrophic lakes where the pH is generally in alkaline region.

Novel Algicidal Substance (Naphthoquinone Group) from Bio-derived Synthetic Materials against Harmful Cyanobacteria, Microcystis and Dolichospermum (유해 남조류 Microcystis와 Dolichospermum에 대하여 선택적 제어가 가능한 생물유래 살조물질 (Naphthoquinone 계열))

  • Joo, Jae-Hyoung;Cho, Hoon;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.22-34
    • /
    • 2016
  • We developed a biologically-derived substance naphthoquinone (NQ) derivate for the eco-safe mitigation of harmful cyanobacteria blooms such as Microcystis and Dolichospermum. NQ was reacted with various substituents ($R_n$) to produce different NQ derivatives. We tested a total of 92 algicidal compounds based on the algicidal activity of Microcystis and Dolichospermum. 22 compounds of NQ were selected as candidates (algicidal activity >80% at $1{\mu}M$). Among them, NQ 40 compound showed the highest algicidal activity of 99.6% and 100% at the optimal concentration of $1{\mu}M$ on Microcystis and Dolichospermum, respectively. No algicidal effects of NQ 40 ($1{\mu}M$) were observed against non-target algae such as Stephanodiscus, Cyclotella and Peridinium. According to the results of acute eco-toxicity assessment, the $EC_{50}$ values of NQ 40 compound for Selenastrum capricornutum and Daphnia magna were 3.2 and $14.5{\mu}M$, respectively, and the $LC_{50}$ for Danio rerio was $15.7{\mu}M$. In addition, for D. magna chronic eco-toxicity assessment, no toxicity toward survival, growth and reproduction was observed. Therefore, we suggested the NQ 40 ($1{\mu}M$) compound as an alternative eco-safe algicidal substance to effectively mitigate harmful cyanobacteria blooms.

작은구슬산호말 (Corallina pilulifera)의 Methanol 추출물로부터 항적조물질 분리

  • ;Long-Guo JIN
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.209-210
    • /
    • 2001
  • 적조에 대한 대책으로서 가장 많이 이용되는 황토법은 적조생물을 침전시키므로써 제거하지만, 황토의 침전에 의한 2차적인 오염의 가능성이 있다 (Na et al., 1996). 황산구리, 과산화수소와 Triosyn에 의한 적조 살조효과가 있지만 이러한 화학물질은 모든 생물에 대한 살조효과가 있으므로 현상에 사용하기는 힘들다. 생물학적 방제에는 바이러스, 박테리아의 방법이 강구되고 있지만, 산소고갈 등의 2차적인 부작용이 야기된다. (중략)

  • PDF

A Case Study of Biologically Derived Algicidal Substances (Naphthoquinone Derivative) for Mitigate of Stephanodiscus and It's Ecological Changing Monitoring (생물유래 살조물질 Naphthoquinone 유도체의 규조 Stephanodiscus 제어 효과 및 생태계 변화 모니터링: A case study)

  • Joo, Jae-Hyoung;Park, Bum Soo;Kim, Sae Hee;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2020
  • Blooms of the small centric diatom Stephanodiscus is quite occasional in winter season in temperate freshwater ecosystems. Often, it leads to degradation of water quality and affects quality of supplied drinking water. In previous studies, naphthoquinone (NQ) compounds have been shown to be effective and selective for controlling winter bloom species Stephanodiscus hantzschii. We conducted a 5 ton scale mesocosm experiment to investigate the effects of NQ on native Stephanodiscus sp. collected from Nakdonggang River in water. After treatment with NQ 4-6 compound (0.2 μM), the cell density of Stephanodiscus sp. was rapidly reduced from 5 × 103 cells mL-1 to 0.2 × 103 cells mL-1 for 10 days. Additionally, NQ 4-6 compound did not affect physicochemical factors (water temperature, dissolved oxygen, pH, conductivity, nutrients) and biological factors (bacteria, heterotrophic nanoflagellates, zooplankton). Therefore, these findings suggest that the NQ 4-6 compound has potential as an alternative algicidal substances to effectively mitigate natural Stephanodiscus sp. blooms, and the application of NQ 4-6 compound will restore the healthy aquatic ecosystems.

The Activities and Characteristics of Algicidal Bacteria in Chindong Bay (진동만의 살조세균의 동태와 살조 특성)

  • KIM Mu Chan;YU Hong Sik;OK Mi Sun;KIM Chang Hoon;CHANG Dong Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.359-367
    • /
    • 1999
  • For investigating the activities of algicidal bacteria, the variations of algicidal bacterial population and chlorophyll-a were checked weekly in Chindong Bay, Korea from May to July, 1998. For identifying their killing characteristics, three strains were selected from the isolated algicidal bacteria. The density of algicidal bacteria kept changing in the range of $6.0\times10^1$ to $6.4\times10^5$ cell $\ell^{-1}$. The density flux of algicidal bacteria coincided with that of chlorophyll-a by a week of lag time. Three algicidal bacteria isolated from field strains, H519S5-4, H605S5-15 and H605S5-22, were investigated in nine microalgal species, Heterosigma akashiwo, Chattonella sp. (Raphidlphyceae), Gymnodinium catenatum, Gyrodinium impudicum, Cochlodinium polyklikoides (Dinophyceae), Chaetoceros sp., Coscinodiscus granii, Ditylum brightwellii, Thalassiosira rotula (Bacillariophyceae). Strain H605S5-22 showed a wide algicidal activities over nine microlgae, strain H605S5-15 over H. akashiwo, G. catenatum, T. rotula, Chattonella sp. and strain H519S5-4 over H. akashiwo, Chattonella sp., Chaetoceros sp., G. catenatum. The activities of the three strains were detected by the secretion of algicidal substances. Therefore, it is suggested that the activities of algicidal bacteria have a significant influence over the population dynamics of phytoplankton and get involved with the sharp decrease in red tides in the coastal area.

  • PDF