Characterization of a Novel Alga-Lytic Bacterium, Acidovorax temperans AK-05, Isolated from an Eutrophic Lake for Degradation of Anabaena cylindrica

부영양 호수에서 분리한 Acidovorax temperans AK-05의 Anabaena cylindrica 분해 특성

  • Published : 2004.06.30

Abstract

Isolation and identification of alga-lytic bacteria were carried out. Fifteen isolates of alga-lytic bacteria were screened by the double layer method using A. cylindrica NIES-19 as a sole nutrient and four isolates among them were compared with their alga-lytic activity. The isolate AK-05 exhibiting the highest alga-lytic activity was identified as Acidovorax temperans base on its 16S rDNA sequence. The culture supernatant of the isolate AK-05 was reliable for the alga-lytic. Alga-lytic activity assays of culture supernatant revealed that the major substances for alga-lytic activity were non-proteins and heat stable. The highest alga-Iytic activity was practical under alkaline conditions and at 25${\sim}$$30^{\circ}C$. It is indicating an advantage for the application of water blooms by cyanobacteria in eutrophic lakes where the pH is generally in alkaline region.

부영양 호수로부터 살조 세균을 분리하고 동정한 결과 Anabaena cylindrica NIES-19를 유릴 탄소원으로 이용하는 double layer방법으로 15종의 살조세균을 분리하였으며 높은 살조 활성을 나타내는 4종의 살조세균 AK-05, AK-07, AK-13 그리고 AK-28을 선별하여 살조 능력을 비교하였다. 이들 중에 AK-05가 가장 높은 살조 활성을 나타내었으며 이를 16S rDNA염기서열을 분석한결과 Acidovorax temperans와 99.5%의 유사성을 나타내어 Acidovorax temperans AK-05로 명명하였다. A. temperans AK-05의 배양 여액을 A. cylindrica NIES-19에 뚜렷한 살조 활성을 나타내었으며, 이것의 살조 활성 능력을 분석한 결과 살조 활성에 관여하는 주요 물질은 non-protein이며 열에 안정적이었다. 이러한 살조 활성 능력은 알칼리 조건과 25${\sim}$$30^{\circ}C$에서 가장 높게 나타냈다. 따라서 이와 같은 특성은 일반적으로 알칼리 조건을 야기하는 Cyanobacteria에 의한 water blooms이 발생하는 호수에 적용하는데 매우 유리할 것으로 여겨진다.

Keywords

References

  1. Carmichael, W.W. 1992. A status report of planktonic cyanobacteria (blue-green algae and their toxins). #EPA/600/R-92/079. United States Environ-mental Protection Agency, Washington, DC, USA
  2. Castenholz, R.W. 1988. Culturing methods for cyanobacteria. Methods Enzymol. 167: 8-92
  3. Felsenstein, J. 1993. PHYLIP: Phylogenetic Infe-rence Package. Version 3.5. Seattle, University of Washington, Washington, USA
  4. Fukami, K., A. Yuzawa, T. Nishijima and Y. Hata. 1992. Isolation and properties of a bacterium inhi-biting the growth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi 58: 1073-1077
  5. Goldman, J.C. and E.J. Carpenter. 1974. A kinetic approach to effect of temperature on algal growth. Limnol. Oceanogra. 19: 756-766
  6. Harada, K.-I. 1996. Chemistry and detection of microcystins. pp.103-148. In Toxic Microcystis (Watanabe, M.F, K.-I. Harada, W.W. Carmichael and H. Fujiki, eds). CRC Press
  7. Jang, E.-H., J.-D. Kim and M.-S. Han. 2003. Isolation and characterization of alga-lytic bacterium HY0210-AK1 and its degradability of Anabaena cylindrica. Korean J. Environ. Biol. 21: 194-201
  8. Katz, E. and A.L. Demain. 1977. The peptide antibi-otics of Bacillus; chemistry biogenesis and pos-sible functions. Bacteriol. Rev. 41: 449-474
  9. Kikuchi, T., T. Miura, K. Harimaya, H. Yano, T. Arimoto and T. Masata. 1973. Odorous metabolites of blue-green alga Schizothrix muelleria $N\ddot ageli$ collected in the southern basin of Lake Biwa: Identification of geosmin. Chem. Pharm. Bull. 21:2342-2343
  10. Kim, J.-D. and M.-S. Han. 2004. Enzyme profiles of alga-lytic bacterial strain AK-13 associated with elimination of cyanobacterium Anabaena cylindrica.Korean J. Environ. Biol. 22: 184-191
  11. Matsuda, Y., T.G. Williams and B. Colman. 1999. Quantification of the rate of $CO_2$ formation in the periplasmic space of microalgae during photosyn-thesis. A comparison of whole cell rate constant for $CO_2$ and $HCO_3$ uptake among three species of the green alga Chlorella. Plant Devel. Environ. 22: 397-405
  12. Mitsutani, A., A. Uchida and Y. Ishida. 1987. Occur-rence of blue-green algae and algal lytic bacteria in Lake of Biwa. Bull. Jpn. Soc. Microbiol. Ecol. 2:21-28
  13. Nigam, P., G. Armour, I.M. Banat, D. Singh and R. Marchant. 2000. Physical removal of textile dyes and solid-state fermentation of dye-adsorbed agri-cultural residues. Bioresour. Technol. 72: 219-226
  14. Parson, R.T, Y. Matia and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. $1^{st}$ ed. Pergamon Press Ltd. Oxford
  15. Pearl, H.W. 1988. Growth and reproductive strategies of freshwater blue-green algae (cyanobacteria). In: Growth and Reproductive Strategies of Freshwater Phytoplankton pp 262-315. (Sandgreen, C.D., ed.). Cambridge University Press, Cambridge
  16. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylo-genetic trees. Mol. Biol. Evol. 4: 406-425
  17. Shilo, M. 1970. Lysis of blue-green algae by myxobac-ter. J. Bacteriol. 104: 453-461
  18. Tsuchiya, Y., M.F. Watanabe and M. Watanabe. 1992. Volatile organic sulfur compounds associated with blue-green algae from inland waters of Japan. Water Sci. Technol. 25: 123-130
  19. Tujimura, S., K. Ishikawa and H. Tsukada. 2001. Effect of temperature on growth of the cyanobacterium Aphanizomenon flos-aquae in Lake Biwa and Lake Yogo. Phycol. Res. 49: 275-280
  20. Yamamoto, Y. 1981. Observation on the occurrence of microbial agents, which cause lysis of blue-green algae on Lake Kaumigaura. Jpn. J. Limnol. 42:20-27
  21. Yamamoto, Y., T. Huchiwa, Y. Hodoki, K. Hotta, H. Uchida and K.-I. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J. Appl. Phycol. 10: 391-397
  22. Yoon, J.-H., S.-T. Lee, S.-B. Kim, W.-Y. Kim, M. Goodfellow and Y.-H. Park. 1997. Restriction fragment length polymorphisms analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Bacteriol. 47: 111-114