• Title/Summary/Keyword: 삭마

Search Result 111, Processing Time 0.02 seconds

Quantitative Analysis for Surface Recession of Ablative Materials Using High-speed Camera and 3D Profilometer (초고속 카메라와 삼차원 표면 측정기를 이용한 삭마 재료의 정량적 표면 침식 분석)

  • Choi, Hwa Yeong;Roh, Kyung Uk;Cheon, Jae Hee;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.735-741
    • /
    • 2018
  • In this paper, the surface recession of ablative materials was quantitatively analyzed using a high-speed camera and a three-dimensional profilometer. The ablation tests of the graphite and carbon/phenolic composite samples were performed using a 0.4 MW arc-heated wind tunnel for simulating the atmospheric re-entry environment. The real-time images during the ablation test were captured by the high-speed camera, and analyzed to calculate the surface recession and recession rate. Also, the surface data of samples were obtained using a three-dimensional profilometer, and the surface recession was precisely calculated from the difference of height between the surface data before and after the test. It is effective to complement the two measurement results in the comprehensive analysis of surface recession phenomena.

Thermal decomposition and ablation analysis of solid rocket nozzle using MSC.Marc (상용해석 코드(MSC-Marc)를 활용한 노즐 내열부품의 숯/삭마 해석 기법)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.311-314
    • /
    • 2009
  • A two-dimensional thermal response and ablation simulation code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem and endothermic reaction in thermal decomposition are solved by rezoning and effective specific heat method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF

The Study on Aerodynamic Characteristics for the Design of High Efficiency Jet Vane (고 효율 제트 베인 설계를 위한 공기역학적 특성 연구)

  • 길경섭;정용갑;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Of the various means for active trajectory correction, a thrust vector control system represents the only principle independent of missile external forces so that this method is operative. The purpose of this study is to analyze the characteristic of jet vane TVC(Thrust vector control) system among mechanical jet deflection. To ensure high performance leading edge shape, aspect ratio and ablated condition is optimized. Supersonic flow system, jet vanes and nozzle with Mach number 2.88 and under expansion ratio 2 were designed to study aerodynamic characteristics of leading edge shape, aspect ratio and ablated conditions.

Survey on Laser Ablation Micro-thruster for Small Satellites (소형 인공위성을 위한 레이저 삭마 미소 추력기 개발 현황)

  • Park, Young Min;Lee, Bok Jik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • With the advancement in technology, miniaturization, integration, and weight reduction of satellite components have become possible. In this regard, existing medium and large satellites have been replaced by small satellites. As the demand for small satellites increases, the need for micro-thrusters has emerged for precise attitude and position control. A laser ablation micro-thruster, which generates thrust by using ablation jets that offer a wide range of thrusts and low-impulse thrusts, is considered as an alternative for micro-thrusters in small satellites. The objective of the present study is to introduce configurations of the laser ablation micro-thruster and its research trend.

Molecular Level Understanding of Chemical Erosion on Graphite Surface using Molecular Dynamics Simulations (분자동역학을 이용한 그래파이트 표면에서의 화학적 삭마현상에 관한 분자 수준의 이해)

  • Murugesan, Ramki;Park, Gyoung Lark;Levitas, Valery I.;Yang, Heesung;Park, Jae Hyun;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.54-63
    • /
    • 2015
  • We present a microscopic understanding of the chemical erosion due to combustion product on the nozzle throat using molecular dynamics simulations. The present erosion process consists of molecule-addition step and equilibrium step. First, either $CO_2$ or $H_2O$ are introduced into the system with high velocity to provoke the collision with graphite surface. Then, the equilibrium simulation is followed. The collision-included dissociation and its influence on the erosion is emphasized and the present molecular observations are compared with the macroscopic chemical reaction model.

The Relationship between Grain Design and Non-uniform Ablation of Solid Rocket Insulation (추진제 형상과 연소관 단열재 불균일 삭마의 관계)

  • Kim, Jeongjin;Lee, Jungseob;Jin, Jungkun;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.28-34
    • /
    • 2020
  • In order to relieve the burden of the rear ablative material, the combustion test of the solid rocket motor with the forward deployed multi-pin grain design was successfully performed twice. However, after disassembling the solid rocket motor, a non-uniform ablation pattern was found in the rear ablative material. Periodic repetition of local and regional ablation was measured precisely. Two-dimensional flow and eddy flow, created by the uneven main-pin flow hitting the rear ablative material, were identified as the cause of non-uniform ablation. In addition. when the rear pins were removed, the possibility of securing the soundness of the rear ablative material was confirmed as the average flow velocity and the standard deviation were lowered.

Ablation Characteristics of 4D-Carbon/Carbon Composites (4D-탄소/탄소 복합재료의 삭마특성)

  • Park, In-Seo;O, In-Seok;Ju, Hyeok-Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.8
    • /
    • pp.687-693
    • /
    • 1997
  • 4방향성(4D)탄소섬유 프리폼을 각각 polyfurfury1 alcohol과 석탄계 핏치로 함침하는 방법과 CVI방법에 의하여 열분해 탄소로 증착하는 방법을 채택하여 4방향성 탄소/탄소 복합재를 제작하였다. 아크플라즈마 토치 및 지상연소 시험에 의하여 이들의 삭마특성을 비교 관찰하였다. 4D 탄소/탄소 복합재의 기공도는 밀도가 증가할 수록 감소하였으며, 고밀도화된 시편일 수록 삭마저항성이 우수하게 나타났다. CVI-핏치계 4D 탄소/탄소 복합재가 내삭마 성능이 가장 우수하였다. 삭마거동은 결합재의 종류와 복합재의 밀도 및 기공도에 크게 의존함을 알 수 있었다.

  • PDF

Numerical Analysis of 1-D Ablation and Charring of a Composite Heat Insulator Using Finite Analytic Method (유한해석법을 이용한 조합 내열부품의 1차원 삭마 및 숯층 형성 해석)

  • 함희철;배주찬;이태호;전광민;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.943-951
    • /
    • 1992
  • The objectives of this study are to analyse the thermal response behavior occurring in the charring ablative material more realistically by considering ablation and char phenomena occurring in several material layers, and to increase the reliability of thermal analysis by being able to get stable solutions through using the finite analytic method. A program has been developed to predict the temperature distribution, ablation thickness, char thickness, ablation velocity and char velocity by solving non-linear one-dimensional heat conduction equation. Results of calculation were compared with results of published papers. From this compariosn this program was proved to be a very good tool for thermal design and analysis of charring ablative materials used in the rocket propulsion system.

Effects of Aluminum Oxide Particles on the Erosion of Nozzle Liner for Solid Rocket Motors (고체 추진기관에서 산화알루미늄 입자가 노즐 내열재의 삭마에 미치는 영향)

  • 황기영;임유진;함희철
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.95-103
    • /
    • 2006
  • The compositions, the gas properties in motor chamber and the aluminum oxide (Al2O3) particle size for two kinds of solid propellants with approximately 20% aluminum powder have been investigated. The SEM photographs of $Al_2O_3$ taken from nozzle entrance liner show that the aluminized PCP propellant with 47% volumetric fraction AP/HNIW and bimodal oxidizer 200-5 ${\mu}m$ can offer greater possibility for increasing aluminum agglomeration than the aluminized HTPB propellant with 64% volumetric fraction AP and trimodal oxidizer 400-200-6 ${\mu}m$. The nozzle entrance liner of solid rocket motor with the PCP propellant shows greater erosion at 4 circumferential sections in line with grain slots due to the impingement of large particles, but that with the HTPB propellant shows uniform erosion with circumferential angle.

A Study on Improvement of the Ablation Resistance of Two Types of the Carbon/Carbon Composites by HfC Coating (하프늄카바이드 코팅을 통한 2종형상의 탄소/탄소복합재의 내삭마성 향상연구)

  • Kang, Bo-Ram;Kim, Ho-Seok;Oh, Phil-Yong;Choi, Seong-Man
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.205-212
    • /
    • 2020
  • In this study, HfC was coated on two types of carbon/carbon composites coated with SiC by vacuum plasma spraying(VPS). The experiment was performed using a plasma wind tunnel with heat flux of 5.06 MW/㎡ for 120 s heat flux before and after the coating. The mass ablation rate was calculated through the mass change before and after the test, and the length change was measured by using calipers and high speed camera. The oxidation/ablation behavior were observed by FE-SEM with EDS analysis of the specimens cross section. The plasma wind tunnel test results showed that the coated specimens had low weight loss and length change, and high oxidation/ablation resistance. However, two types of the specimens tested under the same conditions were different in the ablation behavior and ablation rate, and it was evaluated that the cylindrical type had higher oxidation/ablation resistance.