DOI QR코드

DOI QR Code

분자동역학을 이용한 그래파이트 표면에서의 화학적 삭마현상에 관한 분자 수준의 이해

Molecular Level Understanding of Chemical Erosion on Graphite Surface using Molecular Dynamics Simulations

  • Murugesan, Ramki (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Park, Gyoung Lark (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Levitas, Valery I. (Department of Aerospace Engineering, Iowa State University) ;
  • Yang, Heesung (Research Division, Seyeon Engineering and System) ;
  • Park, Jae Hyun (Department of Aerospace and Software Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Ha, Dongsung (The 4th R&D Institute, Agency for Defense Development)
  • 투고 : 2015.09.25
  • 심사 : 2015.11.10
  • 발행 : 2015.12.01

초록

본 연구에서는 고온/고압의 연소가스에 의해 야기되는 노즐목 삭마현상의 분자수준 메커니즘을 분자동역학 시뮬레이션을 이용하여 관찰한다. 노즐목은 두 개의 그래핀으로 구성된 그래파이트로 모델링하고 분자동역학 시뮬레이션은 충분한 속도를 가지고 그래파이트에 충돌하는 $H_2O$ 분자와 $CO_2$ 분자가 지속적으로 생성되는 과정과 평형상태의 시뮬레이션으로 구성된다. 반응을 모사할 수 있는 ReaxFF 포텐셜을 사용하며, 충돌에 의해 야기되는 $H_2O$$CO_2$ 분자의 해리와 화학적 삭마와의 관계에 중점을 두고 관찰하고자 하며, 거시적인 관찰결과들과 비교하고자 한다.

We present a microscopic understanding of the chemical erosion due to combustion product on the nozzle throat using molecular dynamics simulations. The present erosion process consists of molecule-addition step and equilibrium step. First, either $CO_2$ or $H_2O$ are introduced into the system with high velocity to provoke the collision with graphite surface. Then, the equilibrium simulation is followed. The collision-included dissociation and its influence on the erosion is emphasized and the present molecular observations are compared with the macroscopic chemical reaction model.

키워드

참고문헌

  1. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 7th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 2001.
  2. Bradley, D., Dixon-Lewis, G., El-Din Habik, S. and Mushi, E.M.J., "The Oxidation of Graphite Power in Flame Reaction Zones," Proceedings of the Combustion Institute, Vol. 20, Issue 1, pp. 931-940, 1985.
  3. Chelliah, H.K., Makino, A., Kato, I., Araki, N. and Law, C.K., "Modeling of Graphite Oxidation in a Stagnation-point Flow using Detailed Homogeneous and Semiglobal Heterogeneous Mechanisms with Comparisons to Experiments," Combustion and Flame, Vol. 104, Issue 4, pp. 469-480, 1996. https://doi.org/10.1016/0010-2180(95)00151-4
  4. Thakre, P. and Yang, V., "Chemical Erosion of Carbon-Carbon/Graphite Nozzles in Solid-Propellant Rocket Motors," Journal of Propulsion and Power, Vol. 24, No. 4, pp. 822-833, 2008. https://doi.org/10.2514/1.34946
  5. Thakre, P., Rawat, R., Clayton, R. and Yang, V., "Mechanical Erosion of Graphite Nozzle in Solid-Propellant Rocket Motor," Journal of Propulsion and Power, Vol. 29, No. 3, pp. 593-601, 2013. https://doi.org/10.2514/1.B34630
  6. Srinivasan, S.G. and van Duin, A.C.T., "Molecular-Dynamics-Based Study of the Collisions of Hyperthermal Atomic Oxygen with Graphene using the ReaxFF Reactive Force Field," Journal of Physical Chemistry A, Vol. 115, No. 46, pp. 13269-13280, 2011. https://doi.org/10.1021/jp207179x
  7. van Duin, A.C.T., Dasgupta, S., Lorant, F. and Goddard, W.A., "ReaxFF: A Reactive Force Field for Hydrocarbons," Journal of Physical Chemistry A, Vol. 105, No. 41, pp. 9396-9409, 2001. https://doi.org/10.1021/jp004368u
  8. Chenoweth, K., van Duin, A.C.T. and Goddard, W.A., "A ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation," Journal of Physical Chemistry A, Vol. 112, No. 5, pp. 1040-1053, 2008. https://doi.org/10.1021/jp709896w
  9. Harvey, S.C., Tan, R.K.Z. and Cheatham III, T.E., "The Flying Ice Cube: Velocity Rescaling in Molecular Dynamics Leads to Violation of Energy Equipartition," Journal of Computational Chemistry, Vol. 19, No. 7, pp. 726-740, 1998. https://doi.org/10.1002/(SICI)1096-987X(199805)19:7<726::AID-JCC4>3.0.CO;2-S
  10. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J. R., "Molecular-Dynamics with Coupling to an External Bath," Journal of Chemical Physics, Vol. 81, No. 8, pp. 3684-3690, 1984. https://doi.org/10.1063/1.448118
  11. Plimpton, S.J., "Fast Parallel Algorithms for Short-range Molecular Dynamics," Journal of Computational Physics, Vol. 117, Issue 1, pp. 1-19, 1995. https://doi.org/10.1006/jcph.1995.1039