• Title/Summary/Keyword: 사물지능 통신

Search Result 332, Processing Time 0.026 seconds

Analysis of Energy Preference in the 4th Industrial Revolution Based on Decision Making Methodology (의사결정 방법론 기반 4차 산업혁명 시대 에너지 선호도 분석)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.328-329
    • /
    • 2021
  • Newly, the fourth industrial revolution is a way of describing the blurring of boundaries between the physical, digital, and biological worlds. It's a fusion of advances in AI (artificial intelligence), robotics, the IoT (Internet of Things), 3d printing, genetic engineering, quantum computing, and other technologies. At the world economic forum in Davos, switzerland, in january 2016, chairman professor klaus schwab proposed the fourth industrial revolution for the first time. In order to apply the AHP (analytic hierarchy process) analysis method, the first stage factors were designed as Natural, Water, Earth and Atom energy. In addition, the second stage factors were organized into 9 detailed energies presented in the conceptual model. Thus, we present the theoretical and practical implications of these results.

  • PDF

Technology Trend Analysis of the 4th Industrial Revolution Using AHP (AHP 기법을 이용한 4차 산업혁명 기술 트렌드 분석)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.330-331
    • /
    • 2021
  • Newly, the fourth industrial revolution is a way of describing the blurring of boundaries between the physical, digital, and biological worlds. It's a fusion of advances in AI (artificial intelligence), robotics, the IoT (internet of things), 3d printing, genetic engineering, quantum computing, and other technologies. At the world economic forum in Davos, switzerland, in january 2016, chairman professor (klaus schwab) proposed the fourth industrial revolution for the first time. In order to apply the AHP (analytic hierarchy process) analysis method, the first stage factors were designed as Digital Technology, Physics Technology and Biological Technology. In addition, the second stage factors were organized into 8 detailed services presented in the conceptual model. Thus, we present the theoretical and practical implications of these results.

  • PDF

LoRa Network based Parking Dispatching System : Queuing Theory and Q-learning Approach (LoRa 망 기반의 주차 지명 시스템 : 큐잉 이론과 큐러닝 접근)

  • Cho, Youngho;Seo, Yeong Geon;Jeong, Dae-Yul
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1443-1450
    • /
    • 2017
  • The purpose of this study is to develop an intelligent parking dispatching system based on LoRa network technology. During the local festival, many tourists come into the festival site simultaneously after sunset. To handle the traffic jam and parking dispatching, many traffic management staffs are engaged in the main road to guide the cars to available parking lots. Nevertheless, the traffic problems are more serious at the peak time of festival. Such parking dispatching problems are complex and real-time traffic information dependent. We used Queuing theory to predict inbound traffics and to measure parking service performance. Q-learning algorithm is used to find fastest routes and dispatch the vehicles efficiently to the available parking lots.

A Study on the Protection and Utilization of Personal Information for the Operation of Artificial Intelligence and Big Data in the Fourth Industrial Revolution (4차 산업혁명기 인공지능과 빅데이터 운용을 위한 개인정보 보호와 이용에 관한 연구)

  • Choi, Won Sang;Lee, Jong Yong;Shin, Jin
    • Convergence Security Journal
    • /
    • v.19 no.5
    • /
    • pp.63-73
    • /
    • 2019
  • In the 4th Industrial Revolution, information is collected and analyzed from people and objects through the rapid development of ICT. It is possible to create value. However, there are many legal and institutional restrictions on the collection of information aimed at people.Therefore, in-depth research on the protection and use of personal information in the rapidly changing cyber security environment is needed. The purpose of this study is to protect and utilize personal information for the operation of AI (Artificial Intelligence) and big data during the 4th Industrial Revolution. It is to seek a paradigm shift. The organization of the research for this is: Chapter 1 examines the meaning of personal information during the 4th Industrial Revolution, Chapter 2 presents the framework for the review and analysis of prior research. In Chapter 3, after analyzing policies for the protection and utilization of personal information in major countries, Chapter 4 looks at the paradigm shift in personal information protection during the 4th Industrial Revolution and how to respond. Chapter 5 made some policy suggestions for the protection and utilization of personal information.

Investigation of Research Topic and Trends of National ICT Research-Development Using the LDA Model (LDA 토픽모델링을 통한 ICT분야 국가연구개발사업의 주요 연구토픽 및 동향 탐색)

  • Woo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.9-18
    • /
    • 2020
  • The research objectives investigates main research topics and trends in the information and communication technology(ICT) field, Korea using LDA(Latent Dirichlet Allocation), one of the topic modeling techniques. The experimental dataset of ICT research and development(R&D) project of 5,200 was acquired through matching with the EZone system of IITP after downloading R&D project dataset from NTIS(National Science and Technology Information Service) during recent five years. Consequently, our finding was that the majority research topics were found as intelligent information technologies such as AI, big data, and IoT, and the main research trends was hyper realistic media. Finally, it is expected that the research results of topic modeling on the national R&D foundation dataset become the powerful information about establishment of planning and strategy of future's research and development in the ICT field.

Development of Insole for AI-Based Diagnosis of Diabetic Foot Ulcers in IoT Environment (IoT 환경에서 AI 기반의 당뇨발 진단을 위한 깔창 개발)

  • Choi, Won Hoo;Chung, Tai Myoung;Park, Ji Ung;Lee, Seo Hu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.83-90
    • /
    • 2022
  • Diabetes is a common disease today, and there are also many cases of developing into serious complications called Diabetic Foot Ulcers(DFU). Diagnosis and prevention of DFU in advance is an important task, and this paper proposes the method. Based on existing studies introduced in the paper, it can be seen that foot pressure and temperature information are deeply correlated with DFU. Introduce the process and architecture of SmarTinsole, an IoT device that measures these indicators. Also, the paper describes the preprocessing process for AI-based diagnosis of DFU. Through the comparison of the measured pressure graph and the actual human step distribution, it presents the results that multiple information collected in real-time from SmarTinsole are more efficient and reliable than the previous study.

Fourth industrial revolution of Women's University Students and change of intelligent information technology

  • Hwang, Eui-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.235-243
    • /
    • 2019
  • Universities are opening related majors and subjects to nurture the problem-solving fusion that businesses want. The time has come when rapid technological. On this thesis, we analyzed three years (2017-2019) of survey result of Women University students in order to figuring out and dealing with the change in 4th industrial revolution and intellectual information technology. It turns out that 1) there was an increase of interest in 4th industrial revolution from 59% in 2017 to 80% in 2019, 2) IoT, ICT, Artificial Intelligence, and Education Research System became top priority in technical strategy, 3)the prime keyword is AI, robot, job, 4)the expectation on increasing of the opportunity and the number of jobs in science technology field was 50%, 5)the importance of universities and companies was 50%, 80% each, 6) the information needed for science technology were educational discipline, change in future science, prospective future information in order, and 7)the most needed education were education on creativity, coding, cross-subject, engineering in order. In the era of the fourth industrial revolution, it is essential to expand the SW manpower base in various fields. University education, which should provide connectivity for super-fusion, should provide curriculum optimized for industrial demands such as, fusion and connected education, creative thinking, self-directed problem solving and etc.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

A Design of Smart Sensor Framework for Smart Home System Bsed on Layered Architecture (계층 구조에 기반을 둔 스마트 홈 시스템를 위한 스마트 센서 프레임워크의 설계)

  • Chung, Won-Ho;Kim, Yu-Bin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.49-59
    • /
    • 2017
  • Smart sensing plays a key role in a variety of IoT applications, and its importance is growing more and more together with the development of artificial intelligence. Therefore the importance of smart sensors cannot be overemphasized. However, most studies related to smart sensors have been focusing on specific application purposes, for example, security, energy saving, monitoring, and there are not much effort on researches on how to efficiently configure various types of smart sensors to be needed in the future. In this paper, a component-based framework with hierarchical structure for efficient construction of smart sensor is proposed and its application to smart home is designed and implemented. The proposed method shows that various types of smart sensors to be appeared in the near future can be configured through the design and development of necessary components within the proposed software framework. In addition, since it has a layered architecture, the configuration of the smart sensor can be expanded by inserting the internal or external layers. In particular, it is possible to independently design the internal and external modules when designing an IoT application service through connection with the external device layer. A small-scale smart home system is designed and implemented using the proposed method, and a home cloud operating as an external layer, is further designed to accommodate and manage multiple smart homes. By developing and thus adding the components of each layer, it will be possible to efficiently extend the range of applications such as smart cars, smart buildings, smart factories an so on.

5G Mobile Communications: 4th Industrial Aorta (5G 이동통신: 4차 산업 대동맥)

  • Kim, Jeong Su;Lee, Moon Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.337-351
    • /
    • 2018
  • This paper discusses 5G IOT, Augmented Reality, Cloud Computing, Big Data, Future Autonomous Driving Vehicle technology, and presents 5G utilization of Pyeongchang Winter Olympic Games and Jeju Smart City model. The reason is that 5G is the main artery of the 4th industry.5G is the fourth industrial aorta because 5G is the core infrastructure of the fourth industrial revolution. In order for the AI, autonomous vehicle, VR / AR, and Internet (IoT) era to take off, data must be transmitted several times faster and more securely than before. For example, if you send a stop signal to LTE, which is a communication technology, to a remote autonomous vehicle, it takes a hundredth of a second. It seems to be fairly fast, but if you run at 100km / h, you can not guarantee safety because the car moves 30cm until it stops. 5G is more than 20 gigabits per second (Gbps), about 40 times faster than current LTE. Theoretically, the vehicle can be set up within 1 cm. 5G not only connects 1 million Internet (IoT) devices within a radius of 1 kilometer, but also has a speed delay of less than 0.001 sec. Steve Mollenkov, chief executive officer of Qualcomm, the world's largest maker of smartphones, said, "5G is a key element and innovative technology that will connect the future." With 5G commercialization, there will be an economic effect of 12 trillion dollars in 2035 and 22 million new jobs We can expect to see the effect of creation.