• Title/Summary/Keyword: 비틀림각

Search Result 189, Processing Time 0.034 seconds

Deformation Based Seismic Design of Asymmetric Wall Structures (변형에 기초한 비대칭 벽식 주초의 내진설계)

  • 홍성걸;조봉호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-53
    • /
    • 2002
  • Current torsional provisions focus n restricting torsional effect of asymmetric wall structures by proportioning strength of wall based on the traditional assumption that stiffness and strength are independent. Recent studies have pointed out that stiffness of structural wall is dependent on the strength. This implies that actual stiffness of walls can be determined only after torsional design is finished and current torsional provisions may result in significant errors. To overcome this shortcoming, this paper proposes deformation based torsional design for asymmetric wall structures. Contrary to the current torsional provisions, deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Main purpose of deformation based torsional design is not to restrict torsional response but to ensure intended torsional mechanism according to the capacity design concept. Because displacement and rotation angle can be used as performance criteria indicating performance level of asymmetric structures, this method can be applied to the performance based seismic design effectively.

Structural Behavior of Thin-Walled, Pretwisted Composite Beams (초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석)

  • Park, Il-Ju;Hong, Dan-Bi;Jung, Sung-Nam
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.15-20
    • /
    • 2007
  • In this work, the structural response of thin-walled, composite beams with built-in twist angles is analyzed using a mixed beam approach. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. Reissner's semi-complimentary energy functional is used to describe the beam theory and also to deal with the mixed-nature in the beam kinematics. The bending and torsion related warpings introduced by the non-zero pretwist angles are derived in closed-form through the proposed beam formulation. The theory is validated with available literature and detailed finite element analysis results for rectangular solid section beams with elastic couplings. Very good correlation has been obtained for the cases considered.

Torsional Vibration Control of a Rotating Shaft in Starting and Stopping Process (회전축의 기동.정지시의 비틀림 진동제어)

  • 김중배;이상조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.459-467
    • /
    • 1992
  • 본 연구에서는 비틀림 진동계에 있어서의 비틀림 진동현상을 억제하도록 제어 하기 위하여 최적제어 이론에 기초한 모델추종법을 비틀림 진동계에 적용하였다. 디 지탈 컴퓨터에 의한 제어를 위하여 제어 알고리즘은 디지탈 설계로 되어 있다. 제어 는 각속도와 비틀림 진동제어의 양면으로 수행되며, 축의 각속도는 모델의 출력을 추 종하게 되며 이와 동시에 비틀림각도 감소하게 된다.

Torsional vibration of engine crank shaft (엔진 크랭크 축계의 비틀림 진동)

  • 강구태;여승동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.9-16
    • /
    • 1988
  • 엔진 크랭크축계의 비틀림진동은 엔진설계 및 제작에 있어서 오랜동안 주관심사였다. 크랭크축계의 비틀림진동에서 고려되는 문제는 비틀림진동계의 고유진동수와 이에 따른 차수별 엔진의 공진속도와 엔진의 공진속도에서의 비틀림진동각 및 크랭크축의 비틀림진동에 의한 토오크와 비틀림 응력 등이다. 당사에서는 simulation program을 개발했으며, 비틀림 진동측정 방법도 개발했다. 또한 비틀림진동 측정결과와 simulation결과의 비교로부터 simulation결과 및 측정결과의 정확도를 높여가고 있으며, simulation 방법의 개선을 모색하고 있다. 본 글에서는 이 program에 이용된 기본이론과 실험방법 및 댐퍼 선정 방법을 간단히 소개하고자 한다.

  • PDF

Development of Submersible Axial Pump for Wastewater (폐수 처리용 수중 축류 펌프 개발)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.149-154
    • /
    • 2013
  • This study was performed to develop a high efficiency submersible axial pump for concentration wastewater treatment. To do this, we simulated the effect of some parameters such as the axial twist angle of a blade(${\beta}$), the radial twist angle of a blade(${\alpha}$) and the length of a blade (l) on pump efficiency using commercial code, ANSYS CFX and BladeGen. The results showed that the axial twist angle of a blade(${\beta}$) was the most sensible parameter on the pump efficiency. And the pump efficiency had a maximum at ${\beta}=20^{\circ}$, ${\alpha}=110^{\circ}$ and l=240 mm.

Torsional Strength and Failure Modes of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도와 파괴모드)

  • Lee, Jung-Yoon;Kim, Sang-Woo;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.503-511
    • /
    • 2008
  • This paper presents the results of an analytical and experimental study on the performance of reinforced concrete beams subjected to pure torsion. The main parameters of the experimental tests were amount of torsional reinforcement and the ratio of the transverse torsional reinforcement to the longitudinal torsional reinforcement. The test results indicated that the maximum amount of torsional reinforcement required in ACI 318-05 code underestimated almost twice as much as the observed maximum amount of torsional reinforcement. Comparisons between the tested and calculated torsional behaviors of the 102 beams showed that the torsional failure modes of ACI 318-05 code disagreed with the observed failure modes. In addition, the torsion provisions in ACI 318-05 code overestimate the torsional strength of the RC beams in which relatively large amount of torsional reinforcement were reinforced, while underestimate for the beams with small amount of torsional reinforcement. This discrepancy between the theoretical ultimate torsional strength as given by the ACI 318-05 code and the experimental one can be due to neglecting the tension stiffening effect and the contribution of the torsional strength by concrete.

Effects of Occlusal Condition and Clenching Force on the Mandibular Torque Rotational Movement (교합조건 및 이악물기 힘의 변화가 하악의 비틀림 회전운동에 미치는 영향)

  • Oh, Min-Jung;Han, Kyung-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.411-426
    • /
    • 2005
  • The purpose of this study was to investigate the effects of occlusal condition and clenching level on the mandibular torque rotational movement. For this study, healthy 14 men without any symptoms and signs of temporomandibular disorders were selected. Mandibular torque rotational movement was observed in each circumstance of combination of three occlusal conditions such as natural dentition, with wafer of 3.6 mm thickness, and wafer with resin stop of 14 mm thickness total during hard biting of bite stick at maximum voluntary contraction(MVC) and 50% of MVC level of surface EMG activity of masseter muscle. Electromyographic activity and mandibular torque rotational movement were observed using BioEMG and BioEGN in $BioPak^{(R)}$ system. Each biting movement in each circumstance was composed of clenching one time and hard biting of wooden stick two times. The observed items were opening distance, velocity and amount of torque rotational movement in mandibular movement, and the data were statistically processed with $SPSS^{(R)}$ windows (ver.10.0). The results of this study were as follows: 1. There were no differences in the mandibular movement distance between those value in both biting sides, and between those in both clenching forces, but the mandibular velocity showed a different results by clenching force. For the amount of torque rotational movement, there were no difference in the value of the frontal plane but some significant difference was in the value of the horizontal plane by biting side. 2. The mandibular movement distance and the mandibular velocity in both planes were higher by maximum voluntary contraction than those by half maximum voluntary contraction, and amount of torque rotational movement in the horizontal plane was also increased by maximum voluntary contraction. 3. The opening distance in both planes were decreased with the increase of vertical dimension of occlusion, namely, by the occlusal appliances, and this pattern was also showed in the mandibular velocity in case of hard biting by maximum voluntary contraction. However, the amount of torque rotational movement were not different by the increase of vertical dimension of occlusion. 4. The value of angle and distance of the torque rotational movement in the hard biting of wooden stick were generally higher than those in the clenching without wooden stick in both planes without regard to occlusal conditions and/or clenching forces.

Torsional Analysis of Thin-Walled Open Beams Using Effective Torsional Constants (유효비틀림계수를 사용한 박벽개보의 비틀림해석)

  • Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.203-211
    • /
    • 2006
  • This paper presents a new, effective torsional constant for thin-waled open beams under concentrated and uniformly distributed torques. The proposed constant can be used directly, instead of the St. Venant torsional constant, for any generic comemrcial finite-element program, without modifying the algorithm. The derived torsional constant accounts for both the pure torsion and the warping torsion, and is equal to the St. Venant torsion constant times a correction factor. It is also shown, in the case of the St. Venant torsion, that the derived constant is identical to the torsional constant. The derived effective torsional constant is different from the one given by Elhelbawey et al. The pure torsional shear stress, the warping shear stress, and the warping normal stress were also determine d, using the maximum twisting angle. The accuracy of the proposed torsional constant was validated by comparing the numerical results with the closed-form solutions or other numerical results available in the literature.

Aerodynamic Analysis of a Rectangular Wing in Flapping and Twisting Motion using Unsteady VLM (직사각형 평판 날개의 날개짓과 비틀림 운동에 대한 비정상 VLM 공력 해석)

  • Kim, U-Jin;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.14-21
    • /
    • 2006
  • The unsteady vortex lattice method is used to model twisting and flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various twisting angles and reduced frequency with an amplitude of flapping angle($20^{\circ}$). And the effects of the twisting on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

Flying-Wing Type UAV Design Optimization for Flight Stability Enhancement (전익기형 무인기의 비행 안정성 향상을 위한 형상 최적화 연구)

  • Seong, Dong-gyu;Juliawan, Nadhie;Tyan, Maxim;Kim, Sanho;Lee, Jae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.809-819
    • /
    • 2020
  • In this study, the twist angle and wing planform shapes were selected as design variables and optimized to secure the stability of the flying-wing type UAV. Flying-wing aircraft has no separated fuselage and tails, which has advantages in aerodynamic characteristics and stealth performance, but it is difficult to secure the flight stability. In this paper, the sweep back angle and twist angle were optimized to obtain the lateral stability, the static margin and wing planform shapes were optimized to improve the longitudinal stability of the flying-wing, then effect of the twist angle was confirmed by comparing the stability of the shape with the winglet and the shape with the twist angle. In the optimization formulation, focusing on improving stability, constraints were established, objective functions and design variables were set, then design variable sensitivity analysis was performed using the Sobol method. AVL was used for aerodynamic analysis and stability analysis, and SQP was used for optimization. The CFD analysis of the optimized shape and the simulation of the dynamic stability proved that the twist angle can be applied to the improvement of the lateral stability as well as the stealth performance in the flying-wing instead of the winglet.