• Title/Summary/Keyword: 비커스 경도

Search Result 138, Processing Time 0.022 seconds

Effect of Nitriding on Fatigue Characteristics of Cr-Mo Alloy Steel (고장력 Cr-Mo강의 질화처리에 따른 피로특성)

  • Oh, Kwang Keun;Kim, Jae Hoon;Choi, Hoon Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.597-602
    • /
    • 2015
  • CrMo alloy steel was nitrided using two types of processing methods, ion-nitriding processing and nitrocarburizing. Both processes were conducted for a duration of 30 min. To compare the surface hardness of the alloys created by the different processes, microhardness tests were conducted, and fatigue tests of each material were performed by a cantilever rotary bending fatigue test machine (Yamamoto, YRB 200) in the very high cycle regime ($N>10^7cycle$). Fractography of the fractured surfaces was conducted by scanning electron microscopy - to observe the fracture mechanisms of very high cycle fatigue and the effect of the nitriding process on the fatigue characteristics.

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

Wear Characteristics of SiC by Sintered Temperature and SiO2 Contents (소결온도 및 SiO2 첨가량에 따른 탄화규소의 마모 특성)

  • Park, Sung-Ho;Park, Won-Jo;Yoon, Han-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1003-1009
    • /
    • 2008
  • In this study, liquid phase sintered SiC (LPS-SiC) materials were made by hot pressing method. The particle size of nano-SiC powder was 30nm. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of $SiO_2$, ratios of $SiO_2$ contents were changed by five kinds. Materials have been sintered for 1 hour at $1760^{\circ}C$, $1780^{\circ}C$ and $1800^{\circ}C$ under the pressure of 20MPa. The system of sintering additives which affects a property of sintering as well as the influence depending on compositions of sintering additives were investigated by measurement of density, mechanical properties such as flexural strength, vickers hardness and sliding wear resistance were investigated to make sure of the optimum condition which is about matrix of $SiC_f$/SiC composites. The abrasion test condition apply to load of 20N at 100RPM for 20min. Sintered density, flexural strength of fabricated LPS-SiC increased with increasing the sintering temperature. And in case of LPS-SiC with low $SiO_2$, sliding wear resistance has very excellent. Monolithic SiC $1800^{\circ}C$ sintering temperatures and 3wt% have excellent wear resistance.

Electrochemical Characteristics of Cast Stainless Steel using DC Glow Discharge Surface Treatment in Seawater (DC 글로우 방전 표면처리를 적용한 주조 스테인리스강의 해수 내 전기화학적 특성)

  • Jeong, Sang-Ok;Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.105-105
    • /
    • 2018
  • 스테인리스강은 내식성과 내구성이 우수하여 파이프 및 일반 구조용 고온재료에 널리 사용된다. 그러나 선박 및 해양플랜트 등의 고부가가치 산업에 사용될 경우 내피로성, 내구성 및 내식성이 더욱 요구되고 있다. 특히 해수 환경 하에서 스테인리스강은 재료 표면의 부동태 피막 파괴로 공식 또는 틈부식에 의한 국부부식을 초래하여 해양환경용 재료로 사용하는데 제한적이다. 플라즈마 이온질화는 저온에서 열처리가 가능하며 재료의 변형이 없어 스테인리스강에 널리 적용되는 열화학적 표면처리 기술이다. 플라즈마 이온질화는 일반적으로 고온에서 실시하여 스테인리스강의 기계적 특성을 향상시키는 목적으로 주로 적용하였으나, 저온-플라즈마 이온질화 처리 시 질소의 확산계수 증가로 표면에 S-phase 생성에 기인하여 부식 저항성이 향상된다고 알려져 있다[1-2]. 그러나 해수 펌프, 밸브, 스트레이너(Strainer) 등의 해양 환경용 기자재로 널리 사용되고 있는 주조 스테인리스강에 대한 플라즈마 이온질화 적용과 그 연구는 미비하다. 따라서 본 연구에서는 주조용 스테인리스강에 대하여 플라즈마 이온질화 기술을 적용하여 공정온도에 따른 해수 내 전기화학적 부식 특성을 규명하였다. 플라즈마 이온질화 공정은 $25%N_2$$75%H_2$ 비율로 $350^{\circ}C{\sim}500^{\circ}C$의 공정온도에서 10시간 동안 실시하였다. X-선 회절분석을 통해 공정온도 변수에 따른 표면에 형성된 질화층의 상변화를 분석하였다. 또한 비커스 경도계를 이용하여 표면경도를 측정하여 기계적 특성 향상을 확인하였다. 전기화학적 부식 실험 후 표면 손상 형상 관찰, 무게 감소량 및 손상 깊이 계측을 통해 공정 온도와 부식 저항 특성을 규명하였다. 또한 타펠 분석을 통해 모재와 플라즈마 이온질화 온도 변수에 따른 부식 속도를 비교 분석하였다.

  • PDF

Weibull Statistical Analysis on the Mechanical Properties of SiC by Immersion in Acidic and Alkaline Solutions (산 및 알칼리 용액에 부식된 SiC의 기계적 특성에 대한 와이블 통계 해석)

  • Ahn, Seok-Hwan;Jeong, Sang-Cheol;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.767-773
    • /
    • 2016
  • A Weibull statistical analysis of the mechanical properties of SiC ceramics was carried out by immersion in acidic and alkaline solutions. The heat treatment was carried out at 1373 K. The corrosion of SiC was carried out in acidic and alkaline solutions under KSL1607. The bending strength of corroded crack-healed specimens decreased 47% and 70% compared to those of uncorroded specimens in acidic and alkaline solutions, respectively. The corrosion of SiC ceramics is faster in alkaline solution than in acid solution. The scale and shape parameters were evaluated for the as-received and corroded materials, respectively. The shape parameter of the as-received material corroded in acidic and alkaline solutions was significantly more apparent in the acidic solution. Further, the heat-treated material was large in acidic solution but small in alkaline solution. The shape parameters of the as-received and heat-treated materials were smaller in both acidic and alkaline solutions.

Permeability and Strength of Cements Exposed to Supercritical CO2 for Varying Periods (초임계 CO2 - 시멘트 반응 전후의 투수율 및 강도 변화)

  • Lee, Hikweon;Kim, Kideok;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • Chemical reaction tests were performed to assess the properties of hardened specimens of cement pastes (KS-1 Portland and Class G) exposed to supercritical CO2 for 1, 10, and 100 days. After exposure, the samples' measured permeability and strength were compared with values measured for pristine samples. The pristine cements had permeabilities of 0.009~0.025 mD, which increased by one order of magnitude after 100 days of exposure (to 0.11~0.29 mD). The enhancement of permeability is attributed to the stress release experienced by the samples after removal from the pressure vessel after exposure. Despite its enhancement, the measured permeability mostly remained lower than the API (American Petroleum Institute) recommended maximum value of 0.2 mD. The degradation of the cement samples due to exposure to supercritical CO2 led to a layer of altered material advancing inwards from the sample edges. The Vickers hardness in the altered zone was much higher than that in the unaltered zone, possibly owing to the increase in density and the decrease in porosity due to the carbonation that occurred in the altered zone. Hardness close to the edge within the altered zone was found to have decreased significantly, which is attributed to the conversion of C-S-H into less-strong amorphous silica.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

The Bleaching Effect of Plasma Are and 35% Carbamaide Peroxide and its Influence on the Enamel Surface (Plasma Arc와 35% Carbamaide Peroxide의 미백효과와 법랑질 표면에 미치는 영향)

  • Gu, Hyo-Jin;Song, Keun-Bae
    • Journal of dental hygiene science
    • /
    • v.9 no.5
    • /
    • pp.525-530
    • /
    • 2009
  • The purpose of this study was to evaluate color change and enamel surface changes using the plasma arc light source during tooth bleaching treatments. Twenty-four extracted bovine incisors were selected and embedded in the resin blocks. All the specimens were highly polished and discolored with commercial $COCK^{(R)}$. High concentration carbamide peroxide with and without plasma arc were used for bleaching. Specimens were bleached for 1 hour per week during 3 weeks. Color and enamel surface changes were determined with colorimeter (TC-8600A), microhardness tester(MXT-a7), scanning electron microscope(S-4200). All the collected data analyzed with paired t-test, t-test and one-way ANOVA. After the bleaching, both groups showed the color changes(${\Delta}E^*$). Microhardness of two group decreased after tooth bleaching. The SEM evaluation of enamel surface of both group showed a similar morphology of decalcification after tooth bleaching. Office bleaching using the plasma arc application with 35% carbamide peroxide can increase the color change. Office bleaching using the high concentration of carbamide peroxide and plasma arc also detract the outer surface of enamel. It is recommended that careful procedures are needed during office bleaching with high concentration of carbamide peroxide and light source.

  • PDF

(Effect of Monoclinic Zirconia and Tetragonal Zirconia Addition on Physical Properties and Electrical conductivity of $Al_2O_3$) ($Al_2O_3$의 물리적 성질 및 전기전도도에 미치는 단사정 지르코니아와 정방정 지르코니아의 첨가효과)

  • 박재성;어수해
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The effects of the addition of either monoclinic $ZrO_2$($ZrO_2$(m)) or tetragonal $ZrO_2$($ZrO_2$(t)) containing 5.35wt% $Y_2O_3$ on the physical properties and electrical conductivity of TEX>$Al_2O_3$ were investigated. The addition of $ZrO_2$(m) and $ZrO_2$(t) increased sintered density of $Al_2O_3$. The Vickers hardness also increased as addition of >($ZrO_2$(t) increased going through a maximum at 20wt% and the hardness of the specimens was found to be dependent on the sintered density. The addition of $ZrO_2$(t) improved the hardness of $Al_2O_3$-$ZrO_2$ systems and the $ZrO_2$(m) addition showed the better effect on the thermal shock property of $Al_2O_3$-$ZrO_2$ systems than that of the $ZrO_2$(t) addition. Above 15wt% addition of $ZrO_2$(t), the electrical conductivity is gradually increased with increasing applied voltage but not effects by addition of $ZrO_2$(m).

Fabrication and Physical Properties of ZrO2(m)-Al2O3ZrO2(t)-Al2O3 Structural Ceramics (ZrO2(m)-Al2O3ZrO2(t)-Al2O3 세라믹스의 제조와 물리적 특성)

  • Park, Jae-Sung;Park, Ju-Tae;Park, Jung-Rang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.140-148
    • /
    • 2010
  • The effects of the addition of either monoclinic $ZrO_2(ZrO_2(m))$ or tetragonal $ZrO_2(ZrO_2(t))$ containing 5.35[wt%] $Y_2O_3$ on the physical properties and electrical conductivity of $Al_2O_3$ were investigated. The addition of $ZrO_2$(m) and $ZrO_2$(t) increased sintered density of $Al_2O_3$. The Vickers hardness also increased as addition of $ZrO_2$(t) increased going through a maximum at 20[wt%] and the hardness of the specimens was found to be dependent on the sintered density. The addition of $ZrO_2$(t) improved the hardness of $Al_2O_3-ZrO_2$ systems and the $ZrO_2$(m) addition showed the better effect on the thermal shock property of $Al_2O_3-ZrO_2$ systems than that of the $ZrO_2$(t) addition. Above 15[wt%] addition of $ZrO_2$(t), the electrical conductivity is gradually increased with increasing applied voltage but not effects by addition of $ZrO_2$(m).