• 제목/요약/키워드: 비정렬격자계

검색결과 83건 처리시간 0.019초

비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법 (A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES)

  • 이희동;정재준;조형규;권오준
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.

비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발 (DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES)

  • 양태호;권오준
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

무베어링 로터 허브의 공기역학적 항력 예측 (Aerodynamic Drag Prediction of a Bearingless Rotor Hub)

  • 강희정
    • 한국항공우주학회지
    • /
    • 제40권8호
    • /
    • pp.655-661
    • /
    • 2012
  • 본 연구에서는 비정렬 중첩 혼합 격자계를 사용하는 전산유체기법으로 무베어링 로터허브의 공기역학적 항력을 계산하였다. 동체와 로터 허브 모두 점성 항력보다는 압력 항력이 주요 요소로 작용하고 있으며, 토크 튜브의 항력이 허브 항력에서 가장 큰 비중을 차지하고 있음을 확인할 수 있었다. 허브 항력은 동체 항력 대비 39~41%를 차지하는 것으로 나타났다. 최종적으로 개발된 헬리콥터의 항력 추세와의 비교를 통해, 설계된 무베어링 로터 허브의 항력은 요구도를 충족시키는 것으로 확인되었다.

저마하수 예조건화 기법을 이용한 비행선의 돌풍 응답 해석 (Analysis of Airship Gust Response Using Low Mach Number Preconditioning)

  • 김주성;남화진;권오준;염찬홍
    • 한국항공우주학회지
    • /
    • 제32권5호
    • /
    • pp.30-40
    • /
    • 2004
  • 본 연구에서는 비정렬 격자계에서 비행선 돌풍 해석을 위한 해석 프로그램을 개발하였다. 지배방정식으로는 Euler 방정식이 사용되었으며, 비행선의 저마하수 운행 영역에서의 정확하고 효율적인 해석을 위해 저마하수 예조건화 기법을 적용하였다. 돌풍 모형으로는 sharp-edged gust가 사용되었다. 해석 기법의 검증을 위해서는 선형 방정식에 대해서 유도된 해석해와 비교하였으며, 잘 일치하는 것을 알 수 있었다. 실제적인 비행선 형상에 대해서 돌풍의 영향을 받을 때 양력 계수는 매우 큰 변화를 일으키는 반면에 모멘트는 상대적으로 작은 변화를 일으키는 것을 볼 수 있었다. 또한 제어면의 사용으로 인해 더욱 강하게 정적으로 안정하게 되는 것을 알 수 있었다.

자유표면유동 해석을 위한 비정렬격자계에 적합한 경계면포착법 연구 (A STUDY ON AN INTERFACE CAPTURING METHOD APPLICABLE TO UNSTRUCTURED MESHES FOR THE ANALYSIS OF FREE SURFACE FLOW)

  • 명현국;김종은
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.14-19
    • /
    • 2006
  • A conservative finite-volume method for computing 3-D flow with an unstructured cell-centered method has been extended to free surface flows or two-fluid systems with topologically complex interfaces. It is accomplished by implementing the high resolution method(CICSAM) by Ubbink(1997) for the accurate capturing of fluid interfaces on unstructured meshes, which is based on the finite-volume technique and is fully conservative. The calculated results with the present method are compared to show the ease and accuracy with available numerical and experimental results reported in the literature.

비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구 (A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 조성민;최재훈;권오준
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석 (NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 김재원;권오준
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

비정렬 격자계에서 S.I.P. 최적화 방법을 이용한 점성유동 수치해석 (Numerical Analysis of Viscous Flows on Unstructured Grids Using the Optimal Method of Strongly Implicit Procedure)

  • 신영섭
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.196-202
    • /
    • 2012
  • In this study, numerical analysis of viscous flows is carried out based on the unstructured grid. There exist some difficulties in expressing and computing numerical derivatives on the unstructured grid due to lack of the structured characteristics. The general computer algorithms are developed to perform numerical derivatives easily and extended to be applicable to various geometries composed of hybrid meshes. And the optimal method of strongly implicit procedure is newly contrived to accelerate the rate of convergence in solving the pressure Poisson equation. To verify numerical schemes, the driven cavity problems of 2 and 3 dimension are simulated. The numerical results are compared with others and our numerical schemes are shown to be valid.

비정렬 격자계에서 강건하고 효율적인 LU-SGS 기법 개발: Part Ⅱ- 효율적인 적용 (Robust and Efficient LU-SGS Scheme on Unstructured Meshes: Part Ⅱ - Efficient Implementation)

  • 김주성;권오준
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.39-48
    • /
    • 2004
  • In the present study, an efficient implementation technique of the van Leer's implicit operator is suggested in accordance with the Roe's explicit operator. By using an efficient treatment of the off-diagonal terms, which occupy most of the memory requirement for the linear system of equations, it is shown that the improved scheme only requires less than 30% of memory and is approximately 10-20% faster than the baseline scheme.

비정렬 격자계에서 강건하고 효율적인 LU-SGS 기법 개발: Part I - 내재적 연산자 (Robust and Efficient LU-SGS Scheme on Unstructured Meshes: Part I - Implicit Operator)

  • 김주성;권오준
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.26-38
    • /
    • 2004
  • A study has been made for the investigation of the robustness and convergence of various implicit operators of the LU-SGS scheme using linear stability analysis. It is shown that the behavior of the implicit operator is not determined by its own characteristics, but is determined relatively depending on the dissipative property of the explicit operator. It is also shown that, as the dissipation level of the implicit operator increases, the robustness of the scheme increases, but the convergence rate can be deteriorated due to the excessive dissipation. The numerical results demonstrate that the dissipation level of the impliict operator needs to be higher than that of the explicit operator for computing stiff problems.