• Title/Summary/Keyword: 비선형 자유표면 유동

Search Result 31, Processing Time 0.027 seconds

Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method (고차경계요소법에 의한 선체주위 유동해석)

  • Sa-Y. Hong;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.42-57
    • /
    • 1995
  • An efficient and accurate scheme has been constructed by taking advantages of the hi-quadratic spline scheme and the higher-order boundary element method selectively depending on computation domains. Boundary surfaces are represented by 8-node boundary elements to describe curved surfaces of a ship and its neighboring free surface more accurately. The variation of the velocity potential complies with the characteristics of the 8-node element on the body surface. But on the free surface, it is assumed to follow that of the hi-quadratic spline scheme. By which, the free surface solution is free from numerical damping and has better numerical dispersion property. As numerical examples, steady and unsteady Neumann-Kelvin problems are considered. Numerical results for a submerged spheroid, Series 60($C_B=0.6$) and a modified support the proposed method. Finally, a new upstream radiation condition is derived using a wave equation operator in order to deal with problems for subcritical reduced frequency. The relevance of this operator has been confirmed in the case of unsteady Kelvin source potential.

  • PDF

On Numerical Method for Radiation Problem of a 2-D Floating Body (2차원 부유체 강제동요문제의 수치해석에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.43-53
    • /
    • 1993
  • There exist two difficulties in the nonlinear wave-body problems. First is the abrupt behavior near the intersection point between the body and the free surface, and second is the far field treatment. In this paper, the far field treatment is considered. The main idea is the Taylor series expansion of free-surface geometry and the application of F.F.T. algorithm. The numerical step is as follows. The velocity potential is expressed by the Green's theorem. and the solution is obtained by iteration method. In the iteration stage, the expressions by the Green's theorem are transformed to the convolution forts with the expansion of free surface by the wave slope. Here F.F.T. is applied, so the computing time can be of O(Nlog N) where N is the number of unknowns. The numerical analysis is carried out and the results are compared with other results in linear floating body problem and nonlinear moving pressure patch problem, and good agreements are obtained. Finally nonlinear floating body radiation problem is carried out with computing time of O(Nlog N).

  • PDF

Numerical Analysis of Wave-Current Interaction Phenomenon Using the Spectral Element Method (스펙트랄요소법(SEM)을 이용한 파랑-조류 상호작용 현상 수치해석 연구)

  • Sung, Hong-Gun;Hong, Key-Yong;Kyung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.181-186
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. The present model of the fluid motion is based on the Navier-Stokes equations incorporating velocity-pressure formulation because of need to model the nonlinear wave interaction with spatially non-uniform current field. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. As an intermediate stage of development, solution procedure and characteristics aspects of the present modeling and numerical method are addressed in detail, and preliminary numerical results prove its accuracy and convergence.

  • PDF

Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank (안전주입탱크의 재충수 단계 유동에 대한 이론해석)

  • Park, Jun Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.675-683
    • /
    • 2017
  • In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the $1^{st}$ - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

Development of Rendering Techniques for Particle-based Flow Simulation (입자 기반 유동 시뮬레이션의 렌더링 기술 개발)

  • Lee, Byung-Hyuk;Park, Jong-Chun;Jang, Young-Su;Kim, Sang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Recently, various particle based simulation techniques, which solve the Navier Stokes and continuity equations, have been developed and applied to complicated engineering problems. However, although progress is being made on their visualization or rendering techniques, these are still insufficient. In this study, to render a smooth configuration for a free surface, a rendering technique was developed that included the generation of density fields from the location information for simulated particles and the creation model for a polygonal surface. The developed rendering technique was applied to the visualization of a dynamic free surface flow interacting with a structure using a particle based simulation technique.

Calculation of Wave Resistance of a Hybrid Hydrofoil (복합지지형 고속선의 조파저항 계산)

  • Yoo, J.H.;Kim, Y.G.;Lew, J.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A potential-based panel method has been developed for numerical computation of wave resistance on a hybrid hydrofoil. Hybrid hydrofoil is composed of a main body, two struts and two hydrofoils. The main body, which is assumed to be an axisymmetric body for the present analysis, is normally used to support displacement of a body with its buoyancy. Normal dipoles and the sources are distributed on the body(main body, struts, hydrofoils) and the sources are distributed on the free surface. Linearized free surface and the radiation conditions are satisfied using the fourth order finite difference operator and the semi-linear pressure Kutta condition is used for the numerical computation of the hydrofoils. Poisson type free surface condition has been used for the numerical computation and hyperboloidal panel method has been used for better numerical accuracy. To verify this numeric method, model tests are performed in circulation water channel. From the comparison of experimental results with numeric ones, the present method can be used as a useful tool for the design of high speed vessels.

  • PDF

Computation of Wave Resistance in the Water of Finite Depth Using a Panel Method (패널법을 이용한 유한수심에서의 조파저항 계산)

  • S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.66-74
    • /
    • 1992
  • A panel method in the spirit of Hess & Smith(1962), and also of Dawson(1977) was developed to compute the wave resistance of a submerged, or a surface piercing, body moving in the water of finite depth. As a boundary condition on the free surface what is called the Poisson equation is used, while Yasukawa(1989) chose the Dawson equation for which the double-body flow is regarded as the basic one. In order to satisfy the boundary condition on the bottom surface automatically, the sum of a Rankine source and its image with respect to the bottom surface is chosen as the Green function, and hence the singularity is distributed only on the body and on the free surface thereby decreasing the required number of panels dramatically, compared to that of Yasukawa, without the consequential loss of accuracy. Calculations were done for a submerged sphere and for the Wigley hull, and the results are compared with other existing analytical and numerical data.

  • PDF

Numerical Simulation for Fluid Impact Loads by Flat Plate with Incident Angles (받음각을 갖는 평판의 유체 충격 시뮬레이션)

  • Lee, Byung-Hyuk;Jung, Sung-Jun;Ryu, Min-Cheol;Kim, Yong-Su;Park, Jong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • The free-surface motions interacting with structures are investigated numerically using the Moving Particle Semi-implicit (MPS) method proposed by Koshizuka et al. (1996) for solving incompressible flow. In the method, Lagrangian moving particles are used instead of Eulerian approach using grid system. Therefore the terms of time derivatives in Navier-Stokes equation can be directly calculated without any numerical diffusion or instabilities due to the fully Lagrangian treatment of fluid particles and topological failure never occur. The MPS method is applied to the numerical study on the fluid impact loads for wet-drop tests in a LNG tank, and the results are compared with experimental ones.

Comparison of Numerical Results for Laminar Wavy Liquid Film Flows down a Vertical Plate for Various Time-Differencing Schemes for the Volume Fraction Equation (수직평판을 타고 흐르는 층류파동액막류에 대한 체적분율식 시간차분법에 따른 해석 결과 비교)

  • Park, Il-Seouk;Kim, Young-Jo;Min, June-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1169-1176
    • /
    • 2011
  • Liquid film flows are classified into waveless laminar, wavy laminar, and turbulent flows depending on the Reynolds number or the flow stability. Since the wavy motions of the film flows are so intricate and nonlinear, studies on them have largely been experimental. Most numerical approaches have been limited to the waveless flow regime. The various free surface-tracking schemes adopted for this problem were used to more accurately estimate the average film thickness, rather than to capture the unsteady wavy motion. In this study, the wavy motions in laminar wavy liquid film flows with Reynolds numbers of 200-1000 were simulated with various numerical schemes based on the volume of fluid (VOF) method for interface tracking. The results from each numerical scheme were compared with the experimental results in terms of the average film thickness, the wave velocity, and the wave amplitude.

Verification of Prediction Technique of Wave-making Resistance Performance for a Ship attached with a Vertical Blade (수직날개를 부착한 선박의 조파저항 성능 추정 기법의 검증)

  • Choi, Hee-Jong;Park, Dong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this paper the developed prediction technique of wave-making resistance performance for a ship attached with a vertical blade had been verified. Numerical analysis program as a prediction technique had been developed using the Rankine source panel method and the vortex lattice method(VLM). The nonlinearity of the free surface conditions was fully taken into account using the iterative method and the trim and the sinkage of the ship were also considered in the numerical analysis program. Panel cutting method was applied to get hull surface panels. Numerical computations were carried out for a 4000TEU container carrier and the vertical blade was attached 6 different locations astern. To investigate the validity of the numerical analysis program the commercial viscous flow field analysis program FLUENT was used to obtain the viscous flow field around the ship and the model test was performed. The model test results were compared with the numerical analysis results.