• Title/Summary/Keyword: 비선형 유한 요소프로그램

Search Result 276, Processing Time 0.03 seconds

Efficient Adaptive Finite Element Mesh Generation for Dynamics (동적 문제에 효율적인 적응적 유한요소망)

  • Yoon, Chongyul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.385-392
    • /
    • 2013
  • The finite element method has become the most widely used method of structural analysis and recently, the method has often been applied to complex dynamic and nonlinear structural analyses problems. Even for these complex problems, where the responses are hard to predict, finite element analyses yield reliable results if appropriate element types and meshes are used. However, the dynamic and nonlinear behaviors of a structure often include large deformations in various portions of the structure and if the same mesh is used throughout the analysis, some elements may deform to shapes beyond the reliable limits; thus dynamically adapting finite element meshes are needed in order for the finite element analyses to be accurate. In addition, to satisfy the users requirement of quick real run time of finite element programs, the algorithms must be computationally efficient. This paper presents an adaptive finite element mesh generation scheme for dynamic analyses of structures that may adapt at each time step. Representative strain values are used for error estimates and combinations of the h-method(node movement) and the r-method(element division) are used for mesh refinements. A coefficient that depends on the shape of an element is used to limit overly distorted elements. A simple frame example shows the accuracy and computational efficiency of the scheme. The aim of the study is to outline the adaptive scheme and to demonstrate the potential use in general finite element analyses of dynamic and nonlinear structural problems commonly encountered.

Nonlinear Finite Element Analysis of Precast Pier Coping (프리캐스트 교각 코핑부의 비선형 유한요소해석)

  • Cheon, Ju-Hyoun;Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.153-154
    • /
    • 2010
  • For completing an fully optimized and prefabricated substructure system of bridge, developing pier of precast segment PSC which equip the connection structure of shear resistance and precast foundation are conducted previously. Specimens of coping of bridge were developed and customized, and experiments were performed. The result of the experiment through the result from a reliable non-linear analysis program (RCAHEST) were compared and analyzed and evaluated the stability and ultimate behavior of coping of precast pier.

  • PDF

EVALUATION OF NONLINEAR FINITE ELEMENT COMPUTER PROGRAM SMAP-S2 (비선형 유한요소 컴퓨터 프로그램 SMAP-S2의 평가)

  • 김광진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.271-288
    • /
    • 1991
  • SMAP-S2 is an advanced too-dimensional , static finite element computer program developed for the geometric and material nonlinear structure-medium interaction analysis. The program has specific applications for modeling geomechanical problems associated with multi-staged excavation or embankment. Theoretical formulations and computational algorithms are presented along with the description of elasto-plastic material models. Nonlinear features of the code are verified by comparing with known solutions or experimental test results. Capabilities of per- and post-processing programs are discussed.

  • PDF

Structural Analysis and Design of Artificial Hip Joint by Using Finite Element Method (유한요소법을 이용한 인공 고관절의 역학적 거동 해석 및 설계)

  • 정재연;황운봉;하성규
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.98-109
    • /
    • 1999
  • An investigation has been performed to develop a nonlinear finire element method for the analysis of the long-term behavior of an artificial hip joint. The three dimensional multi-layered brick element is used to analyze the design performances of hip prodtheses with various materials and the thick laminated composite hip prostheses with various layup sequences. The used element can accommodate the varying material properties of the element and allow the ply-drop-off along the eleement edge. The nonlinear finite element analysis program has been verified by the comparison with the exact solution of the bean problem subjected to uniaxial loading. By using the program, the density changes and strength ratios of artificial hip joint are calculated according to the hip prosthesis materials and the layers of composite hip prosthesis. The numerical results are easily applied to evaluate design performances of a hip prosthesis, and decrease the difficulty and time of hip prosthesis design.

  • PDF

Analysis of Semi-Infinite Problems Subjected to Body Forces Using Nonlinear Finite Elements and Boundary Elements (물체력이 작용되는 반무한영역문제의 비선형유한요소-경계요소 조합해석)

  • Hwang, Hak Joo;Kim, Moon Kyum;Huh, Taik Nyung;Ra, Kyeong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The underground structure, which has infinite or semi-infinite boundary conditions, is subjected by body forces and in-situ stresses. It also has stress concentration, which causes material nonlinear behavior, in the vicinity of the excavated surface. In this paper, some methods which can be used to transform domain integrals into boundary integrals are reviewed in order to analyze the effect of the body forces and the in-situ stresses. First, the domain integral of the body force is transformed into boundary integral by using the Galerkin tensor and divergence theorem. Second, it is transformed by writing the domain integral in cylindrical coordinates and using direct integration. The domain integral of the in-situ stress is transformed into boundary integral applying the direct integral method in cylindrical coordinates. The methodology is verified by comparing the results from the boundary element analysis with those of the finite element analysis. Coupling the above boundary elements with finite elements, the nonlinear behavior that occurs locally in the vicinity of the excavation is analyzed and the results are verified. Thus, it is concluded that the domain integrals of body forces and in-situ stresses could be performed effectively by transforming them into the boundary integrals, and the nonlinear behavior can be reasonably analyzed by coupled nonlinear finite element and boundary element method. The result of this research is expected to he used for the analysis of the underground structures in the effective manner.

  • PDF

Analytical Study on Hybrid Precast Concrete Beam-Column Connections (하이브리드 프리캐스트 보-기둥 접합부의 해석적 연구)

  • Choi, Chang-Sik;Kim, Seung-Hyun;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.631-639
    • /
    • 2013
  • Non-linear finite element analysis for newly developed precast concrete details for beam-to-column connection which can be used in moderate seismic region was carried out in this study. Developed precast system is based on composite structure and which have steel tube in column and steel plate in beam. Improving cracking strength of joint under reversed cyclic loading, joint area was casted with ECC (Engineering Cementitious Composites). Since this newly developed precast system have complex sectional properties and newly developed material, new analysis method should be developed. Using embedded elements and models of non-linear finite element analysis program ABAQUS previously tested specimens were successfully analyzed. Analysis results show comparatively accurate and conservative prediction. Using finite element model, effect of axial load magnitude and flexural strength ratio were investigated. Developed connection have optimized performance under axial load of 10~20% of compressive strength of column. Plastic hinge was successfully developed with flexural strength ratio greater than 1.2.

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

Development of Nonlinear Triangular Planar Element Based on Co-rotational Framework (Co-rotational 이론 기반 비선형 삼각평면 유한요소의 개발)

  • Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.485-490
    • /
    • 2015
  • This paper presents development of a geometrically nonlinear triangular planar element including rotational degrees of freedom, based on the co-rotational(CR) formulation. The CR formulation is one of the efficient geometrically nonlinear formulations and it is based on the assumptions on small strain and large rotation. In this paper, modified CR formulation is suggested for the developemnt of a triangular planar element. The present development is validated regarding the static and time transient problems. The present results are compared with the results predicted by the previous researchers and those obtained by the existing commercial software.

Behavior Analysis of the Treated Femur and Design of Composite Hip Prosthesis (대퇴부 거동 해석 및 복합재료 보철물 설계)

  • 임종완;하성규
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.119-130
    • /
    • 2002
  • The nonlinear finite element program has been developed to analyze the design performance of an artificial hip prosthesis and long term behavior of a treated femur with stems made of composite material after cementless total hip arthroplasty(THA). The authors developed the three dimentional FEM models of femoral bone with designed composite stem which was taken with elliptic cross section of 816 brick elements under hip contact load and muscle farce in simulating single leg stand. Using the program, density changes, stress distributions and micromotions of the material femoral bone were evaluated by changing fiber orientation of stems for selected manufacturing method such as plate cut and bend mold. The results showed that the composite materials such as AS4/PEEK and T300/976 gave less bone resorption than the metallic material such as cobalt chrome alloy, titanium alloy and stainless steal. It was found that increasing the long term stability of the prosthesis in the femur could be obtained by selecting the appropriate ply orientation and stacking sequence of composite.

Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads (등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동)

  • Kim, Choong-Man;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper presented the nonlinear behaviors of the single-layered lattice dome, which is widely used for the long-span structure system. The behaviors were analysed through the classical shell buckling theory as the single-layered lattice dome behaves like continum thin shell due to its geometric characteristics, and finite element analysis method using the software program Nastran. Shell buckling theory provides two types of buckling loads, the global- and member buckling, and finite element analysis provides the ultimate load of geometric nonlinear analysis as well as the buckling load of Eigen value solution. Two types of models for the lattice dome were analysed, that is rigid- and pin-jointed structure. Buckling load using the shell buckling theory for each type of lattice dome, governed by the minimum value of global buckling or member buckling load, resulted better estimation than the buckling load with Eigen value analysis. And it is useful to predict the buckling pattern, that is global buckling or member buckling.