• Title/Summary/Keyword: 비선형최소화

Search Result 425, Processing Time 0.025 seconds

Spray Visualization Using Laser Diagnostics (레이저를 이용한 분무 가시화)

  • 윤영빈
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.87-112
    • /
    • 2005
  • 분무를 정량적으로 측정하는 것은 노즐의 설계와 개발을 위해서 뿐만 아니라 연소 시스템 전반의 효율 및 불안정성의 제거, 공해 저감 등의 요구 조건을 만족하기 위해서 중요하다. 이를 위해 이전에는 분무장 내에 수집관을 삽입하는 기계적 패터네이터(Mechanical Patternator)와 같은 삽입식 측정 방식을 이용하여 왔으나, 최근에는 고속카메라, Malvern particle analyzer, PDPA, 광학 패터네이터(Optical Patternator)와 같은 분무장을 교란시키지 않으면서도 빠른 측정이 가능한 가시화 기술들이 적용되고 있다. 특히 광학 패터네이터는 레이저 평면광을 이용하여 분무를 측정하는 비삽입식 기술로 단시간 내에 분무장 내 액체 연료의 질량 및 액적 크기의 단면 분포를 동시에 얻어낼 수 있는 장점을 갖고 있다. 그러나 분무 액적들의 수밀도가 증가하는 경우에는 이들 액적에 의한 입사광 및 신호 감쇠, 다중산란 등에 의한 오차가 심하게 발생하여, 기존의 PDPA, PLIF 등의 광학 기법으로는 충분히 신뢰할 만한 결과를 얻기가 어렵게 된다. 이러한 분무를 정량적으로 측정하기 위해서는 입사광의 감쇠뿐만 아니라 분무장 내 액적들에 의한 신호의 감쇠 과정에 대한 고려가 필요하다. 주면 액적들의 영향을 최소한으로 줄이기 위해서는 레이저 평면광을 사용하는 광학 패터네이터와 달리 레이저 광선을 분무장에 조사하여 고압에서 나타날 수 있는 다중 산란에 의한 오차를 최소화할 수 있다. 이러한 이미지 처리 기법을 이용하는 광학 선형 패터네이터(Optical Line Patternator)를 이용하여 기존 레이저 계측기법으로 측정이 곤란하였던 고압 환경 하에서의 스월 동축형 인젝터의 분무 특성을 해석할 수가 있다. 2015(년도) 6,388, 2025(년도) 13,367, 2035(년도) 18,756, 2045(년도) 22,595, 시장점유율 증가로 인한 수출액 증가분 누적(억원) : 2015(년도) 3,411, 2025(년도) 8,847, 2035(년도) 14,433, 2045(년도) 18,005 또한 시나리오 비교평가를 실시하여 본 결과, 본 연구에서 정의한 순편익 누적(Cumulative Net Profit) 변수를 적용하면 현재 연구비 추세 대비 $30\%$ 까지 연구비를 증가 시키는 것이 효율적임을 알 수 있었다.성, 생산 용이성, 제품 디자인의 우수한 정도가 a=0.01 수준 하에서 유의적으로 추정되었다. 이들 변수들 중에서 품질경쟁력에 가장 큰 영향을 미치는 측정변수는 제품의 기본 성능, 수명(내구성), 신뢰성, 제품 디자인의 순서로 추정되었다. 이것은 한국 제조업이 아직 산업 디자인이 품질경쟁력에 크게 영향을 미치는 성숙단계에 이르지 못하였음을 의미한다. (2) 제품 디자인에게 영향을 끼치는 유의적인 변수는 연구개발력, 연구개발투자 수준, 혁신활동 수준(5S, TPM, 6Sigma 운동, QC 등)이며, 제품 디자인은 우선 품질경쟁력을 높여 간접적으로 고객만족과 고객 충성을 유발하는 것으로 추정되었다. 상기의 분석결과로부터, 본 연구는 다음과 같은 정책적 함의를 도출하였다. 첫째, 신상품 개발과 혁신을 위한 포괄적인 연구개발 프로젝트를 품질 경쟁력의 주요 결정요인(제품의 기본성능, 신뢰성, 수명(내구성) 및 제품 디자인)과 연계하여 추진해야 할 것이다. 둘째, 기업은 디자인 경영 마인드 제고와 디자인 전문인력 양성을, 대학은 디자인 현장 업무를 통하여 창의력 증진과 기획 및 마케팅 능력 교육을, 정부는 디자

  • PDF

Pole Placement Method to Move a Equal Poles with Jordan Block to Two Real Poles Using LQ Control and Pole's Moving-Range (LQ 제어와 근의 이동범위를 이용한 조단 블록을 갖는 중근을 두 실근으로 이동시키는 극배치 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.608-616
    • /
    • 2018
  • If a general nonlinear system is linearized by the successive multiplication of the 1st and 2nd order systems, then there are four types of poles in this linearized system: the pole of the 1st order system and the equal poles, two distinct real poles, and complex conjugate pair of poles of the 2nd order system. Linear Quadratic (LQ) control is a method of designing a control law that minimizes the quadratic performance index. It has the advantage of ensuring the stability of the system and the pole placement of the root of the system by weighted matrix adjustment. LQ control by the weighted matrix can move the position of the pole of the system arbitrarily, but it is difficult to set the weighting matrix by the trial and error method. This problem can be solved using the characteristic equations of the Hamiltonian system, and if the control weighting matrix is a symmetric matrix of constants, it is possible to move several poles of the system to the desired closed loop poles by applying the control law repeatedly. The paper presents a method of calculating the state weighting matrix and the control law for moving the equal poles with Jordan blocks to two real poles using the characteristic equation of the Hamiltonian system. We express this characteristic equation with a state weighting matrix by means of a trigonometric function, and we derive the relation function (${\rho},\;{\theta}$) between the equal poles and the state weighting matrix under the condition that the two real poles are the roots of the characteristic equation. Then, we obtain the moving-range of the two real poles under the condition that the state weighting matrix becomes a positive semi-finite matrix. We calculate the state weighting matrix and the control law by substituting the two real roots selected in the moving-range into the relational function. As an example, we apply the proposed method to a simple example 3rd order system.

Research on improvement of target tracking performance of LM-IPDAF through improvement of clutter density estimation method (클러터밀도 추정 방법 개선을 통한 LM-IPDAF의 표적 추적 성능 향상 연구)

  • Yoo, In-Je;Park, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.99-110
    • /
    • 2017
  • Improving tracking performance by estimating the status of multiple targets using radar is important. In a clutter environment, a joint event occurs between the track and measurement in multiple target tracking using a tracking filter. As the number increases, the joint event increases exponentially. The problem to be considered when multiple target tracking filter design in such environments is that first, the tracking filter minimizes the rate of false track alarmsby eliminating the false track and quickly confirming the target track. The purpose is to increase the FTD performance. The second consideration is to improve the track maintenance performance by allocating each measurement to a track efficiently when an event occurs. Through two considerations, a single target tracking data association technique is extended to a multiple target tracking filter, and representative algorithms are JIPDAF and LM-IPDAF. In this study, a probabilistic evaluation of many hypotheses in the assignment of measurements was not performed, so that the computation amount does not increase nonlinearly according to the number of measurements and tracks, and the track existence probability based on the track density The LM-IPDAF algorithm was introduced. This paper also proposes a method to reduce the computational complexity by improving the clutter density estimation method for calculating the track existence probability of LM-IPDAF. The performance was verified by a comparison with the existing algorithm through simulation. As a result, it was possible to reduce the simulation processing time by approximately 20% while achieving equivalent performance on the position RMSE and Confirmed True Track.

An Adaptive Information Hiding Technique of JPEG2000-based Image using Chaotic System (카오스 시스템을 이용한 JPEG2000-기반 영상의 적응적 정보 은닉 기술)

  • 김수민;서영호;김동욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.9-21
    • /
    • 2004
  • In this paper, we proposed the image hiding method which decreases calculation amount by encrypt partial data using discrete wavelet transform and linear scale quantization which were adopted as the main technique for frequency transform in JPEG2000 standard. Also we used the chaotic system which has smaller calculation amount than other encryption algorithms and then dramatically decreased calculation amount. This method operates encryption process between quantization and entropy coding for preserving compression ratio of images and uses the subband selection method and the random changing method using the chaotic system. For ciphering the quantization index we use a novel image encryption algerian of cyclically shifted in the right or left direction and encrypts two quantization assignment method (Top-down/Reflection code), made change of data less. Also, suggested encryption method to JPEG2000 progressive transmission. The experiments have been performed with the proposed methods implemented in software for about 500 images. consequently, we are sure that the proposed are efficient image encryption methods to acquire the high encryption effect with small amount of encryption. It has been shown that there exits a relation of trade-off between the execution time and the effect of the encryption. It means that the proposed methods can be selectively used according to the application areas. Also, because the proposed methods are performed in the application layer, they are expected to be a good solution for the end-to-end security problem, which is appearing as one of the important problems in the networks with both wired and wireless sections.

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

Improved deformation energy for enhancing the visual quality of planar shape deformation (평면 형상 변형의 시각적 품질 향상을 위한 개선된 형상 변형 에너지)

  • Yoo, Kwangseok;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • We present improved deformation energy to enhance the visual quality of a shape deformation technique, where we preserve the local structure of an input planar shape. The deformation energy, in general, consists of several constraints such as Laplacian coordinate constraint to preserve the quality of deformed silhouette edges, mean value coordinates and edge length constraints to preserve the quality of deformed internal shape, and user-specified position constraints to control the shape deformation. When the positions of user-specified vertices change, shape deformation techniques compute the positions of the other vertices by means of nonlinear least squares optimization to minimize the deformation energy. When a user-specified vertex changes its position rapidly, it is frequently observed that the visual quality of the deformed shape decrease rapidly, which is mainly caused by unnecessary enlargement of the Laplacian vectors and unnecessary change of the edge directions along the boundary of the shape. In this paper, we propose improved deformation energy by prohibiting the Laplacian and edge length constraints from changing unnecessarily. The proposed deformation energy incorporated with well-known optimization technique can enhance the visual quality of shape deformation along the silhouette and within the interior of the planar shape while sacrificing only a little execution time.

Fingerprint Recognition Algorithm using Clique (클릭 구조를 이용한 지문 인식 알고리즘)

  • Ahn, Do-Sung;Kim, Hak-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.69-80
    • /
    • 1999
  • Recently, social requirements of personal identification techniques are rapidly expanding in a number of new application ares. Especially fingerprint recognition is the most important technology. Fingerprint recognition technologies are well established, proven, cost and legally accepted. Therefore, it has more spot lighted among the any other biometrics technologies. In this paper we propose a new on-line fingerprint recognition algorithm for non-inked type live scanner to fit their increasing of security level under the computing environment. Fingerprint recognition system consists of two distinct structural blocks: feature extraction and feature matching. The main topic in this paper focuses on the feature matching using the fingerprint minutiae (ridge ending and bifurcation). Minutiae matching is composed in the alignment stage and matching stage. Success of optimizing the alignment stage is the key of real-time (on-line) fingerprint recognition. Proposed alignment algorithm using clique shows the strength in the search space optimization and partially incomplete image. We make our own database to get the generality. Using the traditional statistical discriminant analysis, 0.05% false acceptance rate (FAR) at 8.83% false rejection rate (FRR) in 1.55 second average matching speed on a Pentium system have been achieved. This makes it possible to construct high performance fingerprint recognition system.

  • PDF

A Design of Wideband Frequency Synthesizer for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.40-49
    • /
    • 2008
  • A Frequency synthesizer for mobile-DTV applications is implemented using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors are chosen for VCO core to reduce phase noise. The measurement result of VCO frequency range is 800MHz-1.67GHz using switchable inductors, capacitors and varactors. We use varactor bias technique for the improvement of VCO gain linearity, and the number of varactor biasing are minimized as two. VCO gain deterioration is also improved by using the varactor switching technique. The VCO gain and interval of VCO gain are maintained as low and improved using the VCO frequency calibration block. The sigma-delta modulator for fractional divider is designed by the co-simualtion method for accuracy and efficiency improvement. The VCO, PFD, CP and LF are verified by Cadence Spectre, and the sigma-delta modulator is simulated using Matlab Simulink, ModelSim and HSPICE. The power consumption of the frequency synthesizer is 18mW, and the VCO has 52.1% tuning range according to the VCO maximum output frequency. The VCO phase noise is lower than -100dBc/Hz at 1MHz at 1MHz offset for 1GHz, 1.5GHz, and 2GHz output frequencies.

Analysis of RTM Process Using the Extended Finite Element Method (확장 유한 요소 법을 적용한 RTM 공정 해석)

  • Jung, Yeonhee;Kim, Seung Jo;Han, Woo-Suck
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.363-372
    • /
    • 2013
  • Numerical simulation for Resin Transfer Molding manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions. Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with a simple channel flow model. Several application examples are analyzed to demonstrate ability of this method.

Design and Implement of 50MHz 10 bits DAC based on double step Thermometer Code (50MHz 2단 온도계 디코더 방식을 사용한 10 bit DAC 설계)

  • Jung, Jun-Hee;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.18-24
    • /
    • 2012
  • This paper reports the test results of a 50MHz/s 10 bits DAC developed with $0.18{\mu}m$ CMOS process for the wireless sensor network application. The 10bits DAC, not likely a typical segmented type, has been designed as a current driving type with double step thermometer decoding architecture in which 10bits are divided into 6bits of MSB and 4bits of LSB. MSB 6bits are converted into 3 bits row thermal codes and 3 bits column thermal codes to control high current cells, and LSB 4 bits are also converted into thermal codes to control the lower current cells. The high and the lower current cells use the same cell size while a bias circuit has been designed to make the amount of lower unit current become 1/16 of high unit current. All thermal codes are synchronized with output latches to prevent glitches on the output signals. The test results show that the DAC consumes 4.3mA DC current with 3.3V DC supply for 2.2Vpp output at 50MHz clock. The linearity characteristics of DAC are the maximum SFDR of 62.02dB, maximum DNL of 0.37 LSB, and maximum INL of 0.67 LSB.