• Title/Summary/Keyword: 비디오 인코더

Search Result 52, Processing Time 0.022 seconds

Real-time MPEG-4 Video Encoder for Live Video Service over CDMA network (CDMA 망에서의 실시간 동영상 서비스를 위한 MPEG-4 비디오 인코더)

  • Lee Yong-Hee;Song Joon-Ho;Kim In-Kwon;Shin Heon-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.707-715
    • /
    • 2006
  • One of the most promising services on the wireless network is multimedia data service. With recently emerged wireless communication technologies which conventionally were devoted to mobile phone services, pre-encoded contents as well as live video data can be transmitted via the same network. As there is enough room in the improvement of data transmission bandwidth in wireless network, video data service is likely to be more demanding. In this paper, real time MPEG-4 video encoder is described as apart of a whole system for live video services over wireless networks. As there are minimal assumptions on the underlying networks, presented system and service can be easily supported by different network system.

An Improvement MPEG-2 Video Encoder Through Efficient Frame Memory Interface (효율적인 프레임 메모리 인터페이스를 통한 MPEG-2 비디오 인코더의 개선)

  • 김견수;고종석;서기범;정정화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1183-1190
    • /
    • 1999
  • This paper presents an efficient hardware architecture to improve the frame memory interface occupying the largest hardware area together with motion estimator in implementing MPEG-2 video encoder as an ASIC chip. In this architecture, the memory size for internal data buffering and hardware area for frame memory interface control logic are reduced through the efficient memory map organization of the external SDRAM having dual bank and memory access timing optimization between the video encoder and external SDRAM. In this design, 0.5 m, CMOS, TLM (Triple Layer Metal) standard cells are used as design libraries and VHDL simulator and logic synthesis tools are used for hardware design add verification. The hardware emulator modeled by C-language is exploited for various test vector generation and functional verification. The architecture of the improved frame memory interface occupies about 58% less hardware area than the existing architecture[2-3], and it results in the total hardware area reduction up to 24.3%. Thus, the (act that the frame memory interface influences on the whole area of the video encoder severely is presented as a result.

  • PDF

Analysis of Power Saving Factor for a DVS Based Multimedia Processor (DVS 기반 멀티미디어 프로세서의 전력절감율 분석)

  • Kim Byoung-Il;Chang Tae-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • This paper proposes a DVS method which effectively reduces the power consumption of multimedia signal processor. Analytic derivations of effective range of its power saving factor are obtained with the assumption of a Gaussian distribution for the frame-based computational burden of the multimedia processor. A closed form equation of the power saving factor is derived in terms of the mean-standard deviation of the distribution. An MPEG-2 video decoder algorithm and AAC encoder algorithm are tested on ARM9 RISC processor for the experimental verification of the power saying of the proposed DVS approach. The experimental results with diverse MPEG-2 video and audio files show 50~30% power saving factor and show good agreement with those of the analytically derived values.

Implementation of Infrared Thermal Image Processing System for Disaster Monitoring (재난 감시를 위한 적외선 열화상 처리 시스템의 구현)

  • Kim, Won-Ho;Kim, Dong-Keun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2010
  • This paper presents design and implementation of infrared thermal image processing system based on the digital media processor for disaster monitoring. The digital thermal image processing board is designed and implemented by using commercial chips such as DM642 processor and video encoder, video decoder. The implemented functions for disaster monitoring are to analyze temperature distribution of a monitoring infrared thermal image and to detect disaster situation such as fire. For the input of infrared thermal image processing system, an infrared camera of type of the $320\;{\times}\;240\;{\mu}$-bolometer is used. The required functions are confirmed with 10 frame/second of processing performance by testing of the prototype and Practicality of the system was verified.

Latent Shifting and Compensation for Learned Video Compression (신경망 기반 비디오 압축을 위한 레이턴트 정보의 방향 이동 및 보상)

  • Kim, Yeongwoong;Kim, Donghyun;Jeong, Se Yoon;Choi, Jin Soo;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • Traditional video compression has developed so far based on hybrid compression methods through motion prediction, residual coding, and quantization. With the rapid development of technology through artificial neural networks in recent years, research on image compression and video compression based on artificial neural networks is also progressing rapidly, showing competitiveness compared to the performance of traditional video compression codecs. In this paper, a new method capable of improving the performance of such an artificial neural network-based video compression model is presented. Basically, we take the rate-distortion optimization method using the auto-encoder and entropy model adopted by the existing learned video compression model and shifts some components of the latent information that are difficult for entropy model to estimate when transmitting compressed latent representation to the decoder side from the encoder side, and finally compensates the distortion of lost information. In this way, the existing neural network based video compression framework, MFVC (Motion Free Video Compression) is improved and the BDBR (Bjøntegaard Delta-Rate) calculated based on H.264 is nearly twice the amount of bits (-27%) of MFVC (-14%). The proposed method has the advantage of being widely applicable to neural network based image or video compression technologies, not only to MFVC, but also to models using latent information and entropy model.

Design and Implementation of Hybrid Network Associated 3D Video Broadcasting System (이종망 연동형 3D 비디오 방송시스템 설계 및 구현)

  • Yun, Kugjin;Cheong, Won-Sik;Lee, Jinyoung;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.687-698
    • /
    • 2014
  • ATSC is currently working on standardization of hybrid 3DTV broadcasting service in heterogenous network environment after completion of service-compatible 3DTV broadcasting service standard based on broadcasting channel. This paper proposes a convergence 3D video broadcasting method on broadcasting and IP network while guaranteeing a Full-HD 3D quality without degrading the image quality of legacy DTV. Specifically, this paper describes transmission of the 3D additional video using the ISO/IEC 23009-1 DASH, robust synchronization method under heterogenous network environments and system target decoder model for hybrid 3DTV receiver. Based on experimental results, we confirm that proposed technologies can be used as a core technology in the hybrid 3DTV standardization and a reference model for a development of hybrid 3DTV encoder and receiver.

Development of MPEG-4 BIFS Encoder for XMT Authoring (XMT 저작용 MPEG-4 BIFS 인코더 개발)

  • Kim, Sang-Wook;Cha, Kyung-Ae;Kim, Hee-Sun;Lee, Dong-Hun;Kim, Kwang-Young;Lee, Myung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1333-1336
    • /
    • 2000
  • 이 논문은 XMT 형식의 미디어 디스크립션을 생성하는 MPEG-4 BIFS 인코더를 제안하고 이의 개발을 보인다. XMT (Extensible MPEG-4 Textual Format)는 텍스트 형식의 MPEG-4 씬 디스크립션으로 방송용 오디오/비디오 편집 및 이동 단말기 사용자 중심의 미디어 컨텐트 개발에 활용될 수 있다. 이 논문에서는 XMT 저작을 위한 시각적인 방식과 이를 통해 편집된 정보인 씬 디스립션, 객체 디스크립션 및 인터프리팅 정보 등을 이용하여 XMT 형식의 미디어 디스크립션을 생성하는 기술을 보인다. 저작된 XMT 형식의 미디어 디스크립션은 디코더에 의해서 프리젠테이션 될 수 있다.

  • PDF

Adaptive Negotiation Interface for End-to-End QoS in Mobile Network (무선네트워크에서의 종단간 QoS를 고려한 적응적 협상 인터페이스)

  • Jang, Ik-Gyu;Park, Hong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.68-70
    • /
    • 2004
  • In this paper we develop an adaptive interface between video compression and transission protocols to handle QoS fluctuations that are common to mobile communication systems. We consider various generic design alternatives for QoS adaptation and identify 'QoS negotiation' as the most promissing. This method gives the best possibilities to obtain system-wide efficiency. To handle the indued system complexity we apply a design philosophy (called ARC) that separates implementation dependencies by introducing QoS interfaces between system modules. In the ARC phlosophy the implementation details are hidden in the subsystems. To assure efficient adaptation, the QoS must be negotiated between modules. We select the QoS parameters that are both necessary and sufficient for efficient negotiation between the video encoder and protocol modules. We describe the relation between the QoS parameters at the interface and the internal parameters of common video coding methods and protocol elements. Furthermore, we describe a negotiation procedure that allows a system-wide optimum to emerge.

  • PDF

A Fast Sub-pixel Motion Estimation Method for H.264 Video Compression (H.264 동영상 압축을 위한 부 화소 단위에서의 고속 움직임 추정 방법)

  • Lee, Yun-Hwa;Choi, Myung-Hoon;Shin, Hyun-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.411-417
    • /
    • 2006
  • Motion Estimation (ME) is an important part of video coding process and it takes the largest amount of computation in video compression. Half-pixel and quarter-pixel motion estimation can improve the video compression rate at the cost of higher computational complexity In this paper, we suggest a new efficient low-complexity algorithm for half-pixel and quarter pixel motion estimation. It is based on the experimental results that the sum of absolute differences(SAD) shows parabolic shape and thus can be approximated by using interpolation techniques. The sub-pixel motion vector is searched from the minimum SAD integer-pixel motion vector. The sub-pixel search direction is determined toward the neighboring pixel with the lowest SAD among 8 neighbors. Experimental results show that more than 20% reduction in computation time can be achieved without affecting the quality of video.

HEVC Encoder Optimization using Depth Information (깊이정보를 이용한 HEVC의 인코더 고속화 방법)

  • Lee, Yoon Jin;Bae, Dong In;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.640-655
    • /
    • 2014
  • Many of today's video systems have additional depth camera to provide extra features such as 3D support. Thanks to these changes made in multimedia system, it is now much easier to obtain depth information of the video. Depth information can be used in various areas such as object classification, background area recognition, and so on. With depth information, we can achieve even higher coding efficiency compared to only using conventional method. Thus, in this paper, we propose the 2D video coding algorithm which uses depth information on top of the next generation 2D video codec HEVC. Background area can be recognized with depth information and by performing HEVC with it, coding complexity can be reduced. If current CU is background area, we propose the following three methods, 1) Earlier stop split structure of CU with PU SKIP mode, 2) Limiting split structure of CU with CU information in temporal position, 3) Limiting the range of motion searching. We implement our proposal using HEVC HM 12.0 reference software. With these methods results shows that encoding complexity is reduced more than 40% with only 0.5% BD-Bitrate loss. Especially, in case of video acquired through the Kinect developed by Microsoft Corp., encoding complexity is reduced by max 53% without a loss of quality. So, it is expected that these techniques can apply real-time online communication, mobile or handheld video service and so on.