• 제목/요약/키워드: 블로어 도어

검색결과 7건 처리시간 0.029초

기존 농촌주택과 패시브형 주택의 에너지 요구량 비교분석 - PHPP분석을 통한 주택의 기밀성 및 창호성능 분석을 중심으로 (An Analysis of the Building Energy Demand of Rural House and Passive type House - An Analysis of the Airtightness and Window system Performance according to using PHPP)

  • 조경민;이태구;김주수
    • KIEAE Journal
    • /
    • 제11권4호
    • /
    • pp.55-61
    • /
    • 2011
  • Due to global warming issues caused by climate changes which are internationally being highlighted, recently, there are lots of efforts under way to reduce energy consumption in various fields. Currently, 25 percent of energy consumption in Korea are being generated from buildings and especially, nearly 54 percent of them are being consumed by households. This study, therefore, aims to consider energy consumption status in the existing rural houses and analyze structure system performance, window system performance and air-permeability of domestic passive-type buildings using PHPP which is an analysis program of building energy to improve energy consumption problems in rural areas. Then, energy reduction plans in rural houses were proposed, by comparing and analyzing energy reduction of the existing rural houses, based on these data.

패시브 디자인을 적용한 주택의 기밀성에 관한 실측 사례 연구 (The measurement study on the airtightness of dwellings based on the passive design)

  • 이태구;윤두영
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.13-20
    • /
    • 2013
  • Today, the world energy consumption in buildings occupies more than 30%. In our country, the energy consumption in buildings also occupies 25% of the entire national energy consumption. With the increasing demand of energy saving in architectural fields, there is a more interest in low-energy construction. For these low-energy housings, our country is planning to apply the energy-saving design standards at the level of passive houses in 2017. However, there is still a limitation in energy saving only with the standards on the performance of envelope in buildings. This means that unless a building is airtight even though it was well-insulated, cooling and heating energy consumption will increase due to the infiltration and leakage. Therefore, this study aims to make a comparative analysis of airtight performance by conducting a blower door test on the housings applied with passive designs, analyze the reasons why most houses fall short of the airtightness standards, and complement the airtightness problems in the inadequate parts of the buildings in order to save building energy.

충청지역 단독주택의 기밀성능 실측 연구 (A Study on the Measurement of Airtightness Performance of Detached Houses in Chung-cheong area)

  • 윤종호;박재완;이광성;백남춘;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.65-71
    • /
    • 2008
  • The purpose of this study is to investigate an airtightness of typical Korean detached houses with field measurements. Air leakage testings by means of blower door test in accordance with ASTM E79-8 were measured in 22 detached dwellings in Daejeon and Geumsan. The results showed that detached dwellings have an average airtightness with ACH50/20 (air chang per hour at a pressure difference of 50 Pa between inside outside) of 0.82 $hr^{-1}$ which is a higher range than for typical apartments and leakage class G by normalized leakage area of ASHRAE.

Blower Door Test를 이용한 공동주택 자연환기시스템의 환기성능 분석 (Analysis on Ventilation Performance of Natural Ventilation Systems in Multi-Family Housing Using Blower Door Test)

  • 김민석;어진선;홍구표;김병선
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.129-134
    • /
    • 2016
  • Today, natural ventilation systems are widely applied in multi-family housing. However, studies using the wind data trend line of the blower door test are insufficient. Purpose: Through this study, we will propose a computational method about ventilation performance of natural ventilation systems by conducting blower door test. Method: First, we sealed the gaps between the main systems including the natural ventilation system and conducted the blower door test. Next, the natural ventilation system was opened, the blower door test was conducted, and the difference in air flow rate between when closed and when opened was checked. Blower door test was carried out with a pressure difference of 50 Pa. Result: Therefore, the ventilation performance of the natural ventilation system was checked by drawing a trend line using the data to calculate the air flow rate at 2 Pa of the natural ventilation equipment standard pressure difference.

국내 비주거용 건물의 기밀성능 측정 결과를 통한 기밀 시공 가이드라인 개발 (Developing the Construction Guideline for ZEB Based on Air-tightness of Public Buildings in Korea)

  • 배민정;최경석
    • 토지주택연구
    • /
    • 제11권3호
    • /
    • pp.69-74
    • /
    • 2020
  • Since the design Standard for Energy Conservation in Building was implemented in 2008 for the first time, building elements such as window and door should satisfy the minimum criteria to apply for a building. Though its regulation does not cover the whole building yet, recent demand to reduce energy consumption in building sector grows rapidly year by year and also draws a lot of interest to ensure the whole building level. For example, a Zero energy building, one of low-energy buildings, requires a customized solution to resolve the air leakage issue to meet the standards in achieving the high level of air tightness. In this study, six non-residential buildings were tested by fan pressurization method to observe the air tightness of whole building to suggest the construction guideline for air tightness of low-energy building. Five out of six tested buildings showed 0.27 to 1.16 h-1 of number of air changes except one community center. These buildings were carefully constructed not only for building planning but also for parts where there was a concern of air leakage, thereby securing high levels of air-tightness. The construction skills were developed as a checklist to manage and supervise the construction site. It is our suggestion to use this checklist at construction sites for ZEB with the high level of air-tightness.

다가구 및 다세대 원룸주택의 기밀성능 실측연구 (The Measurement of Airtightness Performance of Multi-Family Housing)

  • 백남춘;한승현;이왕제;윤종호;신우철
    • KIEAE Journal
    • /
    • 제14권5호
    • /
    • pp.117-121
    • /
    • 2014
  • Even though a study of airtightness performance of apartment and detached house have been done constantly, there are few of studies of multi-family housing which increasing every year. Therefore, this study analyzed airtightness performance of 20 households of one room in Daejeon to investigate airtightness performance standard. All experiments were performed under the same conditions except sealing windows to investigate airtightness performance without sealing windows (natural condition) and airtightness performance with sealing windows of studio apartment. As results, (1) average ACH50 without sealing windows was 19.2/h for pressurization, and 12.8/h for depressurization and (2) average ACH50 with sealing windows was 16.0/h for pressurization, and 10.7/h for depressurization and ACH50 in both condition, ACH50 under pressurization was about 50% higher than that under depressurization. Throughout this experiment, we can figure out that about 16% of air infiltration rate is occurred in windows, and the other 84% is occurred in rest of places such as Junction structure, socket and ventilating opening.

자연환기장치가 적용된 공동주택의 기밀 및 공기유동 성능 실측 연구 (A Study of Measurement on Airtightness and Air-Flow Performance of Apartment Housing Adopting Window Frame-Type Natural Ventilation)

  • 전주영;김길태;김선동
    • 토지주택연구
    • /
    • 제5권4호
    • /
    • pp.325-332
    • /
    • 2014
  • 본 연구에서는 창문형 자연환기장치가 설치된 7개 세대의 소형공동주택($33m^2{\sim}51m^2$)을 대상으로 Blower Door를 이용한 현장 기밀성능 및 공기유동 성능을 측정하였다. 창문형 자연환기장치는 외기에 면하는 모든 창호 및 거실분합문에 설치되어 있으며, 수동 개폐형 장치가 설치되어있다. 본 연구에서는 자연환기장치와 창호의 개폐여부에 따라서 6개의 CASE를 설정하여 실측하였다. 측정결과, 자연환기장치와 모든 개구부를 밀폐한 상태의 기밀성능 값(CASE1)은 1.77~3.12ACH로 평균 2.27ACH로 나타났으며, 문헌조사 결과 자연환기장치가 설치되지 않은 일반 공동주택(1.65~4.28ACH)과 유사하게 나타났다. 내외측의 자연환기장치를 모두 열었을 때의 공기유동성능 값(CASE6)은 평균 5.87ACH로 나타나 밀폐조건과 비교하여 평균 3.6ACH가 증가하는 것으로 나타났다. 외측 환기장치와 창호를 밀폐한 조건에서 내측 환기장치만 개방시와 내측창을 개방시의 공기유동성능값의 차이는 평균 0.29ACH로 내측창호 개방시의 기밀성능 값이 높게 나타났다. 반대로 내측 환기장치와 창호를 밀폐한 조건에서 외측 환기장치만 개방시와 외측창 개방시의 차이는 평균 0.30ACH로 외측창호 개방시가 높게 나타났다. 내측창호만의 공기유동성능과 외측창호만의 공기유동성능 측정값의 차이는 0.77ACH로 내측창호가 더 우수하게 나타났다. 향후에는 자연환기장치와 창호 및 새시의 종류에 따른 기밀성능의 추가 측정을 통해 정량적 상관관계 조사가 필요할 것으로 판단된다.