• Title/Summary/Keyword: 분해공정

Search Result 1,377, Processing Time 0.028 seconds

High Temperature Steam Electrolysis for Production of Hydrogen Using SOFC (스팀으로부터 고체산화물 연료전지를 이용한 수소제조)

  • Kang, Jung-Shik;Shim, Jae-Geum;Lee, Sang-Deuk;Lee, Byoung-Kyon;Hong, Suck-In;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.455-458
    • /
    • 2006
  • 최근 들어 고체산화물 연료전지(SOFC) 기술이 급성장함에 따라 고온 수증기 전기분해(HTE) 기술이 물로부터 수소를 대량으로 제조할 수 있는 환경 친화적인 기술로 주목 받고 있다 고온 수증기 전기분해는 기존의 액상 전기분해보다 총 에너지 요구량이 작고 전기분해에 필요한 최소의 전기에너지가 온도가 증가할수록 감소하며 고온 수증기 전기분해에 요구되는 에너지의 일부를 전기에너지 대신 열의 형태로 공급이 가능하여 보다 높은 효율을 기대할 수 있다. 따라서 off peak시 기저부하전력을 이용하고, 공정의 열원으로 고온가스의 폐열, 천연가스의 부분산화 반응열 또는 고온 가스원자로의 폐열을 활용하면 SOFC 이용 고온 수증기 전기분해 공정은 수소경제사회에서 요구되는 수소를 대량으로 제조할 수 있는 경제적인 공정이 될 것이다.

  • PDF

A Study on Dissolved Ozone Decomposer in Ozonated Water for Semiconductor Process (반도체 공정용 기능수의 용해오존 분해장치에 관한 연구)

  • Moon, Se-Ho;Chai, Sang-Hoon;Son, Young-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.6-11
    • /
    • 2011
  • We have developed dissolved ozone decompose system in the used ozonated water for the semiconductor and LCD fabrication processes, which will be base of obtaining core process technology in the high performance, low price semiconductor and LCD fabrications. Using this technology, it is possible for the semiconductor wafer and LCD planer to process more rapid and chip, and productivity will be improved.

고온, 고압 가수분해반응에 의한 우지 분해공정: 반응표면분석법을 이용한 반응조건의 최적화

  • Kim, Won-Ho;Kim, Yong-Min;Kim, Ho-Jung;Heo, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.303-307
    • /
    • 2001
  • Operation conditions to maximize the hydrolysis of beef tallow was investigated by using the response surface method. In the response surface analysis, reaction temperature, pressure, and ratio of fat to water was considered as independent variables. The concentrations of triglycerides. diglycerides, monoglycerides and free fatty acids were considered as dependent. variables. The optimum conditions for the hydrolysis was as follows' the reaction temperature was $271^{\circ}C$, pressure 86 bar and ratio of fat to water was 106.08g / 133.93 g. The maximum concentration of free fatty acids was 96.49 % at these optimum conditions.

  • PDF

Decomposition and leaching of Rare earth ore (희토류 광물의 분해 및 침출)

  • Lee, Jin-Yeong;Jeon, Ho-Seok;Kim, Joon-Soo
    • Mineral and Industry
    • /
    • v.23
    • /
    • pp.26-31
    • /
    • 2010
  • 희토류 정광으로부터 첨단산업 원료소재로 수요가 급증하고 있는 고순도 희토류 소재를 제조하기 위한 가장 첫 공정은 침출공정이다. 즉, 희토류 정광으로부터 원소별 희토류 성분을 분리하기 위해서는 용액상태로 전환이 필요한데, 이때 일반적인 산 및 알카리 용액에는 희토류 성분은 침출이 되지 않으므로 강산 또는 강 알카리 조건에서 희토류 정광을 침출 가능한 형태로 변환 시켜주는 분해공정이 선행되며 이후 산 침출에 의해 희토류 성분을 침출하게 된다. 본 고에서는 대표적인 희토류 광물인 모나자이트와 바스트나사이트, 그리고 이 광물의 혼합물 형태로 생산되는 혼합광물에 대한 분해 및 침출공정을 소개하고자 한다.

  • PDF

Enhancement of anaerobic digestion of sewage sludge by combined process with thermal hydrolysis and separation (하수슬러지 혐기성 소화 효율 향상을 위한 열가수분해-고액분리 결합 공정)

  • Lee, See-Young;Han, Ihn-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • The purpose of this study was to evaluate the performance of novel process with thermal hydrolysis and separation as pre-treatment of anaerobic digestion (AD). The dewatered sludge was pre-treated using THP, and then separated. The separated liquid used as substrate for AD and separated solid was returned on THP(Thermal Hydrolysis Process). The degree of disintegration (DD, based on COD) using only THP found 45.1-49.3%. The DD using THP+separation found 76.1-77.6%, which was higher than only THP. As result from dual-pool two-step model, the ratio of rapidly degradable substrate to total degradable substrate found 0.891-0.911 in separated liquid, which was higher than only THP. However, the rapidly degradable substrate reaction constant (kF) of only THP and THP+separation were similar. This results found that dewatered sludge was disintegrated by THP, and then rapidly degradable substrate of hydrolyzed sludge was sorted by separation.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Color Removal of Rhodamine B by Photoelectrochemical Process using Powder TiO$_2$ (분말 광촉매를 이용한 광전기화학 공정에서 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.823-830
    • /
    • 2008
  • The feasibility study for the application of the photoelectrocatalytic decolorization of Rhodamine B(RhB) was performed in the slurry photoelectrochemical reactor with powder TiO$_2$. The photoelectrocatalytic process was consisted of powder TiO$_2$, Pt electrode and three 8 W UV-C lamps. The effects of operating conditions, such as current, electrolyte, air flow rate and electrode material were evaluated. The experimental results showed that optimum TiO$_2$ dosage and current in photoelectrocatalytic process were 0.4 g/L and 0.02 A, respectively. It was found that the RhB could be degraded more efficiently by this photoelectrocatalytic process than the sum of the two individual oxidation processes(photocatalytic and electrolytic process). It demonstrated a synergetic effect between the photo- and electrochemical catalysis. Photoelectrocatalytic process was affected to air flow rate and optimum air flow rate was 2 L/min. The electrode material and NaCl effect of decolorization of RhB were not significant within the experiment conditions.

Development of (α-Amylase Coated Magnetic Nanofiber for the Hydrolysis of Starch. ((α-Amylase가 고정화된 Magnetic Nanofiber를 이용한 전분 분해공정 개발)

  • Kim, Hyun;Lee, Jung-Heon
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1260-1265
    • /
    • 2007
  • Magnetically separable enzyme-coated nanofibers were developed for the hydrolysis of starch. Stability of ${\alpha}-amylase-coated$ nanofiber was greatly improved and its residual activity was maintained over 92.7% after 32 days incubation at room temperature and under shaking conditions (200 rpm). The recovery of enzyme was high and enzyme activity after 10 recycle was 95.2% of its original activity. Developed enzyme-coated nanofibers were used for the hydrolysis of starch. When 0.5 mg of magnetically separable enzyme nanofibers was used, 40 g/l of starch (2 ml) was completely degraded within 40 min. The continuous enzyme reactor was developed and used for starch hydrolysis and 76% of starch (30 g/l) was hydrolyzed with 1 hr residence time.

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.