DOI QR코드

DOI QR Code

Enhancement of anaerobic digestion of sewage sludge by combined process with thermal hydrolysis and separation

하수슬러지 혐기성 소화 효율 향상을 위한 열가수분해-고액분리 결합 공정

  • Lee, See-Young (Department of Environmental Engineering, Graduate School, The University of Seoul) ;
  • Han, Ihn-Sup (Department of Environmental Engineering, Graduate School, The University of Seoul)
  • 이시영 (서울시립대학교 환경공학과) ;
  • 한인섭 (서울시립대학교 환경공학과)
  • Received : 2021.11.27
  • Accepted : 2021.12.17
  • Published : 2021.12.30

Abstract

The purpose of this study was to evaluate the performance of novel process with thermal hydrolysis and separation as pre-treatment of anaerobic digestion (AD). The dewatered sludge was pre-treated using THP, and then separated. The separated liquid used as substrate for AD and separated solid was returned on THP(Thermal Hydrolysis Process). The degree of disintegration (DD, based on COD) using only THP found 45.1-49.3%. The DD using THP+separation found 76.1-77.6%, which was higher than only THP. As result from dual-pool two-step model, the ratio of rapidly degradable substrate to total degradable substrate found 0.891-0.911 in separated liquid, which was higher than only THP. However, the rapidly degradable substrate reaction constant (kF) of only THP and THP+separation were similar. This results found that dewatered sludge was disintegrated by THP, and then rapidly degradable substrate of hydrolyzed sludge was sorted by separation.

본 연구는 혐기성 소화의 전처리로써 열가수분해와 고액분리가 결합된 공정의 성능을 평가하였다. 탈수케이크는 열가수분해를 통해 가용화되며, 이후 고액분리를 수행한다. 고액 분리된 액상은 혐기성 소화에 기질로써 이용되고 고형물은 열가수분해로 회수된다. 열가수분해의 가용화율(COD 기준)은 45.1-49.3%이며 고액분리와 결합한 공정은 76.1-77.6%로 나타났다. Dual-pool two-step model을 통해 도출된 메탄 발생 특성을 살펴보면 고액 분리된 액상의 전체 분해 가능한 물질 중 분해가 빠른 물질의 비(a)는 0.891-0.911로 열가수분해된 시료에 비해 높게 나타났다. 반면에 분해가 빠른 물질의 반응 속도(kF)는 유사하게 나타났다. 이를 통해 열가수분해와 고액분리가 결합한 공정은 열가수분해를 통해 분해가 빠른 물질을 생성하고, 고액분리를 통해 선별하는 것으로 나타났다.

Keywords

References

  1. Ding, H. H., Chang, S. and Liu, Y., "Biological hydrolysis pretreatment on secondary sludge: enhancement of anaerobic digestion and mechanism study", Bioresource Technology, 244, pp. 989~995. (2017). https://doi.org/10.1016/j.biortech.2017.08.064
  2. Han, D., Lee, C. Y., Chang, S. W. and Kim, D. J., "Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion", Bioresource Technology, 245, pp. 1162~1167. (2017). https://doi.org/10.1016/j.biortech.2017.08.108
  3. Choi, J. M., Han, S. K. and Lee, C. Y., "Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment", Bioresource Technology, 259, pp. 207~213. (2018). https://doi.org/10.1016/j.biortech.2018.02.123
  4. Neumann, P., Gonzalez, Z. and Vidal, G., "Sequential ultrasound and low-temperature thermal pretreatment: process optimization of influence on sewagw sludge solubilization, enzyme activity and anaerobic digestion", Bioresource Technology, 234, pp. 178~187. (2017). https://doi.org/10.1016/j.biortech.2017.03.029
  5. Li, Y. Y. and Noike, T., "Upgrading of anaerobic digestion of waste activated sludge by thermal hydrolysis", Water Sci. & Techno., 26, pp. 857~866. (1992). https://doi.org/10.2166/wst.1992.0466
  6. Donoso-Brave, A., Perez-Elvira, S., Aymerich, E. and Fdz-Polance, F., "Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability fo sewage sludge", Bioresource Technology, 102, pp. 660~666. (2011). https://doi.org/10.1016/j.biortech.2010.08.035
  7. Higgins, M. J., Beightol, S., Mandahar, U., Suzuki, R., Xiao, S., Lu, H. W., Le, T., Mah, J., Pathak, B., DeClippeleir, H., Novak, J. T., Al-Omari, A. and Murthy, S. N., "Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics", Water Research, 122, pp. 557~569. (2017). https://doi.org/10.1016/j.watres.2017.06.016
  8. Bougrier, C., Delgenes, J. P. and Carrere, H., "Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion", Chem. Eng. J., 139, pp. 239~244. (2008).
  9. Federation, Water Environmental and APH Association. "Standard methods for the examination of water and wastewater", American Public Health Association (APHA), Washington, DC, USA. (2005).
  10. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartne, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C., "Measurement of protein using bicinchoninic acid", Anal. Biochem., 150, pp. 76~85. (19 85). https://doi.org/10.1016/0003-2697(85)90442-7
  11. Debois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., "Colorimetric method for determination of sugars and related substances", Anal. Chem., 28, pp. 350-356. (1956). https://doi.org/10.1021/ac60111a017
  12. Perez-Elvira, S. I., Sapkaite, I. and Fdz-Polanco, F., "Evaluation of thermal steam-explosion key operation factors to optimize biogas production from biological sludge", Wat. Sci. & Technol., 72, pp. 937-945. (2015). https://doi.org/10.2166/wst.2015.294
  13. Mendieta, O., Castro, I., Rodriguez, J. and Escalante, H., "Synergistic effect of sugarcane scum as an accelerant co-substrate on anaerobic co-digestion with agricultural crop residues from non-centrifugal cane sugar agribusiness sector", Bioresource Technology, 303, p. 122957. (2020). https://doi.org/10.1016/j.biortech.2020.122957
  14. Allleira-Pereira, J. M., Perez-Elvira, S. I., Sanchez-Oneto, J., Cruz, R. Portela, J. R. and Nebot, E., "Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreament", Water Research, 71, pp. 330~340. (2015). https://doi.org/10.1016/j.watres.2014.12.027
  15. Sapkaite, I., Barrado, E., Fdz-Polanco, F. and Perez-Elvira, S. I., "Optimization fo a thermal hyddrolysis process for sludge pre-treatment", J. of Environ. Manag., 192, pp. 25~30. (2017) . https://doi.org/10.1016/j.jenvman.2017.01.043
  16. Brule, M., Oechsner, H. and Jungbluth, T., "Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays", Bioprocess Biosyst. Eng., 37, pp. 1759~1770. (2014). https://doi.org/10.1007/s00449-014-1150-4