Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.9.1260

Development of (α-Amylase Coated Magnetic Nanofiber for the Hydrolysis of Starch.  

Kim, Hyun (Department of Chemical and Biochemical Engineering Chosun University)
Lee, Jung-Heon (Department of Chemical and Biochemical Engineering Chosun University)
Publication Information
Journal of Life Science / v.17, no.9, 2007 , pp. 1260-1265 More about this Journal
Abstract
Magnetically separable enzyme-coated nanofibers were developed for the hydrolysis of starch. Stability of ${\alpha}-amylase-coated$ nanofiber was greatly improved and its residual activity was maintained over 92.7% after 32 days incubation at room temperature and under shaking conditions (200 rpm). The recovery of enzyme was high and enzyme activity after 10 recycle was 95.2% of its original activity. Developed enzyme-coated nanofibers were used for the hydrolysis of starch. When 0.5 mg of magnetically separable enzyme nanofibers was used, 40 g/l of starch (2 ml) was completely degraded within 40 min. The continuous enzyme reactor was developed and used for starch hydrolysis and 76% of starch (30 g/l) was hydrolyzed with 1 hr residence time.
Keywords
Nanoenzyme; amylase; starch; magnetic nanofiber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, B. C. S. Nair, J. Kim, J. H. Kwak, J. W. Grate, S. H. Kim and M. B. Gu. 2005. Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 7, S382-S388
2 Kim, J., H. Jia and P. Wang. 2006. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 30, 25-33
3 Lozano, P., E. Garcia-Verdugo, R. Piamtongkam, N. Karbass, T. D. Diego, M. I. Burguete, S. V. Luis and J. L. Iborra. 2007. Bioreactors Based on Monolith-Supported Tonic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis & Catalysis 349, 1077-1084   DOI   ScienceOn
4 van Roon, J. L., R. M. Boom, M. A. Paasman, J. Tramper, C. G. Schroen and H. H. Beeftink. 2005. Enzyme distribution and matrix characteristics in biocatalytic particles. Journal of Biotechnol. 119, 400-415   DOI   ScienceOn
5 Wang, W., L. Deng, Z. H. Peng and X. Xiao. 2007. Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase. Enzyme and Microbial Technology 40, 255-561   DOI   ScienceOn
6 Zayats, M., R. Baron, I. Popov and I. Willner. 2005. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett. 5, 21-25   DOI   ScienceOn
7 Jiang, D. S., S. Y. Long, J. Huang, H. Y. Xiao and J. Y. Zhou. 2005. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal 25, 15-23   DOI   ScienceOn
8 Bai, S., Z. Guo, W. Liu and Y. Sun. 2006. Resolution of (+/-)-menthol by immobilized Candida rugosa lipase on superparamagnetic nanoparticles. Food Chemistry 96, 1-7   DOI   ScienceOn
9 Chen, J. P. and W. S. Lin. 2003. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enzyme and Microbial Technology 32, 801-811   DOI   ScienceOn
10 Hong, J., P. Gong, D. Xu, L. Dong and S. Yao. 2007. Stabilization of [alpha]-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel. Journal of Biotechnology 128, 597-605   DOI   ScienceOn
11 Hong, J., D. Xu, P. Gong, H. Sun, L. Dong and S. Yao. 2007. Covalent binding of [alpha]-chymotrypsin on the magnetic nanogels covered by amino groups. Journal of molecular catalysis. B, Enzymatic 45, 84-90   DOI   ScienceOn