• Title/Summary/Keyword: 분해경로

Search Result 322, Processing Time 0.037 seconds

Pro-apoptotic Effects of Platycodin D Isolated from Platycodon grandiflorum in Human Leukemia Cells (도라지 유래 사포닌 platycodin D에 의한 인체 백혈병세포의 apoptosis 유도)

  • Park, Sang Eun;Lee, Su Young;Shin, Dong Yeok;Jeong, Jin-Woo;Jin, Myung Ho;Park, Seon Young;Chung, Yoon Ho;Hwang, Hye Jin;Hong, Sang Hoon;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.389-398
    • /
    • 2013
  • Platycodin D is a major constituent of triterpene saponins, which is found in the root of Platycodon grandiflorum, Platycodi Radix, which is widely used in traditional Oriental medicine for the treatment of many chronic inflammatory diseases. Several pharmacological effects of this compound have been reported recently, such as anti-inflammation, immunogenicity, anti-adipogenesis, lowered cholesterol, and anti-cancer activity. However, the mechanism by which this action occurs is poorly understood. In this study, we found that platycodin D greatly increased the potential of the anti-proliferative effect in various cancer cell lines. Our data revealed that platycodin D treatment resulted in a time- and concentration-response growth inhibition of U937 cells by inducing apoptosis, as evidenced by the formation of apoptotic bodies, chromatin condensation, and the accumulation of cells in the sub-G1 phase. Apoptosis induction of U937 cells by platycodin D correlated with an increase in the Bax/Bcl-2 ratio and caused the down-regulation of IAP family members. In addition, platycodin D treatment resulted in proteolytic activation of caspase-3, the concomitant degradation of poly(ADP-ribose) polymerases, and the collapse of the mitochondria membrane potential (${\Delta}{\Psi}_m$). However, the cytotoxic effects induced by platycodin D treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrated the important role that caspase-3 played in the observed cytotoxic effect. These findings suggest that platycodin D may be a potential chemotherapeutic agent for use in the control of human leukemia U937 cells. These findings also provided important new insights into possible molecular mechanisms of the anti-cancer activity of platycodin D.

Photoprotection and Anti-inflammatory Effects of Chinese Medical Plants (약용식물추출물의 광보호 효과와 항염증 효과 연구)

  • Jin-Hwa, Kim;Sung-Min, Park;Gwan-Sub, Sim;Bum-Chun , Lee;Hyeong-Bae, Pyo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.227-233
    • /
    • 2004
  • Chronic exposure to solar radiation, particularly ultraviolet (UV) light, causes a variety of adverse reactions on human skin, such as sunburn, photoaging and photocarcinogenesis. Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental facts play critical roles in cellular damage. And, repeated-UV irradiation activated the expression of the matrix metalloproteinase (MMP) and induced skin irritation. Therefore, the development of effective and safe photoprotectants that can reduce and improve the skin damage has been required. The purpose of this study was to investigate the photo-protective effect of several chinese medical plants (Juniperus chinensis) on the UV -induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. Fluorometric assays of the proteolytic activities of MMP-1 (collagenase) were performed using fluorescent collagen substrates. UVA induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. Expression of prostaglandin E$_2$ (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay(EIA) using PGE$_2$ monoclonal antibody. In the human skin we tested anti-irritation effect on the SLS-induced damage skin after appling the extract containing emulsion. We found that Juniperus chinensis extract had potent radical scavenging effect by 98% at 100$\mu\textrm{g}$/mL. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25$\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. In the test of proinflammatory cytokines of human keratinocytes Juniperus chinensis extract decreased expression of interleukin 6 about 30%. The amount of PGE$_2$ by HaCaT keratinocytes was significantly increased at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB (p < 0.05). At the concentrations of 3.2-25$\mu\textrm{g}$/mL of this extract, the production of PGE$_2$ by HaCaT keratinocytes (24 h after 10mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p < 0.05). In SLS-induced skin irritation model in vivo, we found to reduce skin erythema and improve barrier recovery after appling Juniperus chinensis extract containing emulsion when compared to irritated non-treated and placebo-treated skin. Our results suggest that Juniperus chinensis extract can be effectively used for the prevention of UV and SLS-induced adverse skin reactions and applied as anti-aging and anti-irritation cosmetics.

Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage (LPS로 자극한 RAW264.7 대식세포에서 보리순 에탄올 추출물의 항염증 효과)

  • Kim, Mee-Kyung;Kim, Dae-Yong
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.735-743
    • /
    • 2015
  • This study investigated the anti-inflammatory activity of barley leaf extract in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and hairless mice. Pre-treatment with barley leaf extract significantly inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-II (COX-II) in a dose-dependent manner in LPS-stimulated RAW264.7 cells. Barley leaf extract also significantly inhibited the secretion of inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) were strongly suppressed by barley leaf extract in LPS-stimulated cells. In hairless mice, barley extract significantly decreased the pathological phenotypes of contact dermatitis, such as erythema, edema, and scabs. These results indicate that barley leaf extract has an anti-inflammatory effect and therefore a possible role in the treatment of inflammatory diseases or in functional cosmetics.

Identifying Bridging Nodes and Their Essentiality in the Protein-Protein Interaction Networks (단백질 상호작용 네트워크에서 연결노드 추출과 그 중요도 측정)

  • Ahn, Myoung-Sang;Ko, Jeong-Hwan;Yoo, Jae-Soo;Cho, Wan-Sup
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.1-13
    • /
    • 2007
  • In this research, we found out that bridging nodes have great effect on the robustness of protein-protein interaction networks. Until now, many researchers have focused on node's degree as node's essentiality. Hub nodes in the scale-free network are very essential in the network robustness. Some researchers have tried to relate node's essentiality with node's betweenness centrality. These approaches with betweenness centrality are reasonable but there is a positive relation between node's degree and betweenness centrality value. So, there are no differences between two approaches. We first define a bridging node as the node with low connectivity and high betweenness value, we then verify that such a bridging node is a primary factor in the network robustness. For a biological network database from Internet, we demonstrate that the removal of bridging nodes defragment an entire network severally and the importance of the bridging nodes in the network robustness.

  • PDF

Characterization of Physiological Properties in Vibrio fluvialis by the Deletion of Oligopeptide Permease (oppA) Gene (Vibrio fluvialis oligopeptide permease (oppA) 유전자 deletion에 의한 생리적 특성)

  • Ahn Sun Hee;Lee Eun Mi;Kim Dong Gyun;Hong Gyoung Eun;Park Eun Mi;Kong In Soo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.131-135
    • /
    • 2006
  • Oligopeptide is known to be an essential nitrogen nutrient for bacterial growth. Oligopeptide can be transported into cytoplasm by a specific transport system, Opp system. Opp system is composed of five proteins, which are transcribed by an operon. These are responsible for oligopeptide binding protein (OppA), permease (OppB and OppC) and energy generation system (OppD and OppF), respectively. Previously, we isolated the opp operon from Vibrio fluvialis and constructed the oppA mutant by allelic exchange method. In this study, we investigated the growth pattern and biofilm production under the different growth condition. When the cells were cultivated using brain heart infusion(BHI) medium, the wild type was faster than the mutant in growth during the exponential phase. However, it showed that the growth pattern of two strains in M9 medium is very similar. The growth of wild type showed better than that of the mutant grown at pH 8. At pH 7, there was no an obvious difference in growth. After 5 mM $H_2O_2$ was treated to the cells $(OD_{600}=1.2)$, the cell survival was examined. The oppA mutation did not affect in survivability. In the presence of $10{\mu}g/ml$ polymyxin B, the biofilm production of the oppA mutant was higher than that of the wild type.

Studies on the Iron Component of Soy Sauce, Bean Paste and Red Pepper Paste -Part I. Iron Content of Soy Sauce- (장류(醬類)의 철분(鐵分)에 관(關)한 연구(硏究) - 제1보(第一報). 간장중의 철분함량(鐵分含量) -)

  • Yoo, Hai-Yul;Park, Yoon-Joong;Lee, Suk-Kun;Son, Cheon-Bae
    • Applied Biological Chemistry
    • /
    • v.22 no.3
    • /
    • pp.160-165
    • /
    • 1979
  • This study was carried out to investigate effects of iron content on the quality of soy sauce, bean paste and red pepper paste, and to elucidate the origin of iron and change of the contents during production processes. For the first step, the iron contents in commercial soy sauce and changes of the contents during brewing process were determined. The results obtained were as follows. 1, Iron contents of raw materials were 108 ppm in soy bean, 133ppm in defatted soy bean, 79 ppm in wheat, 5 ppm in sodium chloride, 58 ppm in seed koji, 300-2000 ppm in spore of Aspergillus oryzae, 240 ppm in wheat gluten, 20 ppm in sodium carbonate (above figures were of dry weight basis), 6 ppm in hydrochloric acid, 18 ppm in caramel and 0.3ppm in brewing water respectively. 2, Iron contents in koji were 200-240 ppm (as dry weight basis) and increased, more or less, in progress of koji-making period. 3. Iron contents in the mashes during fermentation were 40 rpm after 1 month, 43-47 ppm after 3 months and 49-62ppm after 6 months. 4. In chemical soy sauce, the iron content was 159 ppm after hydrolysis of wheat gluten with hydrochloric acid, and 184 ppm after neutralization. 5. Higher iron contents were detected both in fermented and chemical soy sauce when the concentration of total nitrogen increased, but the levels were higher in chemical soy sauce than in fermented one at the same concentration of total nitrogen. 6. In the case of fermented soy sauce, the iron content in the filtrate was decreased by press-filtration, but no significant change was found between before and after heat-sterilization. 7. Iron contents in commercial soy sauce were varied with the producers, however, the average value was 62.7 ppm as calculated as 1.0 percent of total nitrogen. And the average level of iron in home-made soy sauce produced by conventional method was 37.68 ppm.

  • PDF

Relationship between Reactive Oxygen Species and Adenosine Monophosphate-activated Protein Kinase Signaling in Apoptosis Induction of Human Breast Adenocarcinoma MDA-MB-231 Cells by Ethanol Extract of Citrus unshiu Peel (진피 추출물에 의한 인간유방암 MDA-MB-231 세포의 apoptosis 유도에서 ROS 및 AMPK의 역할)

  • Kim, Min Yeong;HwangBo, Hyun;Ji, Seon Yeong;Hong, Su-Hyun;Choi, Sung Hyun;Kim, Sung Ok;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.410-420
    • /
    • 2019
  • Citrus unshiu peel extracts possess a variety of beneficial effects, and studies on their anticancer activity have been reported. However, the exact mechanisms underlying this activity remain unclear. In the current study, the apoptotic effect of ethanol extract of C. unshiu peel (EECU) on human breast adenocarcinoma MDA-MB-231 cells and related mechanisms were investigated. The results showed that the survival rate of MDA-MB-231 cells treated with EECU was significantly inhibited in a concentration-dependent manner, which was associated with the induction of apoptosis. EECU-induced apoptosis was associated with the activation of caspase-8 and caspase-9, which initiate extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3, a representative effect caspase. EECU suppressed the expression of the inhibitor of apoptosis family of proteins, leading to an increased Bax/Bcl-2 ratio and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also enhanced the loss of the mitochondrial membrane potential and cytochrome c release from the mitochondria to the cytosol, along with truncation of Bid. In addition, EECU activated AMP-activated protein kinase (AMPK), and compound C, an AMPK inhibitor, significantly weakened EECU-induced apoptosis and cell viability reduction. Furthermore, EECU promoted the generation of reactive oxygen species (ROS), which acted as upstream signals for AMPK activation as pretreatment of cells, with the antioxidant N-acetyl cysteine reversing both EECU-induced AMPK activation and apoptosis. Collectively, these findings suggest that EECU inhibits MDA-MB-231 adenocarcinoma cell proliferation by activating intrinsic and extrinsic apoptotic pathways, which was mediated through ROS/AMPK-dependent pathways.

Antioxidant and Anticancer Activities of Euonymus porphyreus Extract in Human Lung Cancer Cells A549 (인체 폐암 세포주 A549에서 Euonymus porphyreus 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Bae, Soobin;Park, Jung-ha;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 2021
  • Euonymus porphyreus, a species of plant in the Celastraceae family, is widely distributed in East Asia, especially in Southern China. The botanical characteristics of E. porphyreus have been reported, but its antioxidative and anticancer activities remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extracts of E. porphyreus (EEEP) and the molecular mechanism of its anticancer activity in human lung adenocarcinoma A549 cells. The total polyphenol and flavonoid compound contents from EEEP were 115.42 mg/g and 23.07 mg/g, respectively. EEEP showed significant antioxidative effects with a concentration at 50% of the inhibition (IC50) value of 11.09 ㎍/ml, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. EEEP showed cytotoxic activity by increasing the SubG1 cell population of A549 cells in a dose-dependent manner. Apoptosis in A549 cells treated with EEEP was evident due to increased apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. EEEP-induced apoptosis resulted in increased expression of the First apoptosis signal (Fas), p53, and Bax, with decreased expression of Bcl-2 and subsequent activation of caspase-8, -9, and caspase-3, leading to cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that EEEP may exert an anticancer effect by inducing apoptosis in A549 cells through both intrinsic and extrinsic pathways.

Inhibitory Effect of Protaetiamycine 9 Derived from Protaetia brevitarsis seulensis Larvae on LPS-mediated Inflammation in RAW264.7 Cells (LPS로 자극한 RAW264.7 대식세포에서 흰점박이꽃무지 유충 유래 Protaetiamycine 9의 항염증 효과)

  • Choi, Ra-Yeong;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.987-994
    • /
    • 2021
  • Our previous studies have reported that antimicrobial peptides (AMPs) derived from the larvae of white-spotted flower chafer (Protaetia brevitarsis seulensis) exert anti-inflammatory and neuroprotective activities. This study explored the anti-inflammatory effects of protaetiamycine 9 (CVLKKAYFLTNLKLRG-NH2), a novel AMP, derived from P. b. seulensis against lipopolysaccharide (LPS)-mediated inflammatory response in RAW264.7 macrophage cells. Protaetiamycine 9 (25, 50, 75, and 100 ㎍/ml) did not cause cytotoxic effects against RAW264.7 cells. The RAW264.7 cells were pre-treated with various concentrations of protaetiamycine 9 (25-100 ㎍/ml) for 1 hr and then exposed to LPS (100 ng/ml) for 24 hr. Protaetiamycine 9 treatments decreased the LPS-induced secretion of inflammatory mediators, such as nitric oxide (NO), in a dose-dependent manner. Protaetiamycine 9 (25-100 ㎍/ml) effectively downregulated the LPS-induced increase in mRNA and the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. Protaetiamycine 9 also suppressed the production and gene expression of pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, compared to the presence of LPS alone. Furthermore, protaetiamycine 9 inhibited the degradation of inhibitory kappa B alpha (IκB-α) and the phosphorylation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In conclusion, these results suggest that protaetiamycine 9 exhibits LPS-mediated inflammatory responses by blocking IκB-α degradation and MAPK phosphorylation.

Association Between Psychiatric Medications and Urinary Incontinence (정신과 약물과 요실금의 연관성)

  • Jaejong Lee;SeungYun Lee;Hyeran Ko;Su Im Jin;Young Kyung Moon;Kayoung Song
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Urinary incontinence (UI), affecting 3%-11% of males and 25%-45% of females globally, is expected to rise with an aging population. It significantly impacts mental health, causing depression, stress, and reduced quality of life. UI can exacerbate psychiatric conditions, affecting treatment compliance and effectiveness. It is categorized into transient and chronic types. Transient UI, often reversible, is caused by factors summarized in the acronym DIAPPERS: Delirium, Infection, Atrophic urethritis/vaginitis, Psychological disorders, Pharmaceuticals, Excess urine output, Restricted mobility, Stool impaction. Chronic UI includes stress, urge, mixed, overflow, functional, and persistent incontinence. Drug-induced UI, a transient form, is frequently seen in psychiatric treatment. Antipsychotics, antidepressants, and other psychiatric medications can cause UI through various mechanisms like affecting bladder muscle tone, altering nerve reflexes, and inducing other conditions like diabetes or epilepsy. Specific drugs like lithium and valproic acid have also been linked to UI, though mechanisms are not always clear. Managing UI in psychiatric patients requires careful monitoring of urinary symptoms and judicious medication management. If a drug is identified as the cause, options include discontinuing, reducing, or adjusting the dosage. In cases where medication continuation is necessary, additional treatments like desmopressin, oxybutynin, trihexyphenidyl, or amitriptyline may be considered.