Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.11.987

Inhibitory Effect of Protaetiamycine 9 Derived from Protaetia brevitarsis seulensis Larvae on LPS-mediated Inflammation in RAW264.7 Cells  

Choi, Ra-Yeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.31, no.11, 2021 , pp. 987-994 More about this Journal
Abstract
Our previous studies have reported that antimicrobial peptides (AMPs) derived from the larvae of white-spotted flower chafer (Protaetia brevitarsis seulensis) exert anti-inflammatory and neuroprotective activities. This study explored the anti-inflammatory effects of protaetiamycine 9 (CVLKKAYFLTNLKLRG-NH2), a novel AMP, derived from P. b. seulensis against lipopolysaccharide (LPS)-mediated inflammatory response in RAW264.7 macrophage cells. Protaetiamycine 9 (25, 50, 75, and 100 ㎍/ml) did not cause cytotoxic effects against RAW264.7 cells. The RAW264.7 cells were pre-treated with various concentrations of protaetiamycine 9 (25-100 ㎍/ml) for 1 hr and then exposed to LPS (100 ng/ml) for 24 hr. Protaetiamycine 9 treatments decreased the LPS-induced secretion of inflammatory mediators, such as nitric oxide (NO), in a dose-dependent manner. Protaetiamycine 9 (25-100 ㎍/ml) effectively downregulated the LPS-induced increase in mRNA and the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. Protaetiamycine 9 also suppressed the production and gene expression of pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, compared to the presence of LPS alone. Furthermore, protaetiamycine 9 inhibited the degradation of inhibitory kappa B alpha (IκB-α) and the phosphorylation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In conclusion, these results suggest that protaetiamycine 9 exhibits LPS-mediated inflammatory responses by blocking IκB-α degradation and MAPK phosphorylation.
Keywords
Anti-inflammation; antimicrobial peptide; mitogen-activated protein kinases (MAPKs); Protaetia brevitarsis seulensis; RAW264.7 macrophages;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Choi, I. H., Yu, R., Lim, Y. J., Choi, G. S., Choi, S. U., Hwang, J. I., Son, J. S. and Chung, T. H. 2019. Antithrombotic efficacy of Protaetia brevitarsis extract. J. Environ. Sci. Int. 28, 639-643.   DOI
2 Hwang, D., Goo, T. W. and Yun, E. Y. 2020. In vitro protective effect of paste and sauce extract made with Protaetia brevitarsis larvae on HepG2 cells damaged by ethanol. Insects 11, 494.   DOI
3 Kim, M. J., Kim, K. B. W. R., Park, S. H., Park, S. Y., Choi, H. D., Choi, J. S., Jang, M. R., Im, M. H. and Ahn, D. H. 2017. Anti-inflammatory effect of ethanolic extract from Polyopes affinis through suppression of NF-κB and MAPK activation in LPS-stimulated RAW264.7 cells. J. Kor. Soc. Food Sci. Nutr. 46, 537-544.   DOI
4 Guzik, T. J., Korbut, R. and Adamek Guzik, T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.
5 Nathan, C. and Xie, Q. W. 1994. Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918.   DOI
6 Lee, H. S., Ryu, H. J., Song, H. J. and Lee, S. O. 2017. Enzymatic preparation and antioxidant activities of protein hydrolysates from Protaetia brevitarsis larvae. J. Kor. Soc. Food Sci. Nutr. 46, 1164-1170.   DOI
7 Lee, J. H., Baek, M., Lee, H. J., Kim, I. W., Kim, S. Y., Seo, M., Kim, M. A., Kim, S. H. and Hwang, J. S. 2019. Anti-inflammatory activity of antimicrobial peptide protaetiamycine 2 derived from the Protaetia brevitarsis seulensis. J. Life Sci. 29, 1218-1226.
8 Lee, S. H., Lee, E. J., Chung, C., Sohn, H. Y. and Kim, J. S. 2019. Hesperetin ameliorates inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells via p38 MAPK and ERK1/2. J. Life Sci. 29, 129-134.   DOI
9 Lee, S., Seo, Y. H., Song, J. H., Kim, W. J., Lee, J. H., Moon, B. C., Ang, M. J., Kim, S. H., Moon, C., Lee, J. and Kim, J. S. 2021. Neuroprotective effect of Protaetia brevitarsis seulensis' water extract on trimethyltin-induced seizures and hippocampal neurodegeneration. Int. J. Mol. Sci. 22, 679.   DOI
10 Li, H., Zhang, Q., Jin, X., Zou, X., Wang, Y., Hao, D., Fu, F., Jiao, W., Zhang, C., Lin, H., Matsuzaki, K. and Zhao, F. 2018. Dysifragilone A inhibits LPS-induced RAW264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol. Med. Rep. 17, 674-682.
11 Nam, N. H. 2006. Naturally occurring NF-κB inhibitors. Mini Rev. Med. Chem. 6, 945-951.   DOI
12 Park, J. H. and Lee, S. R. 2018. Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW264.7 cells. J. Nutr. Health 51, 323-329.   DOI
13 Seo, J. K. 2016. Screening and purification of an antimicrobial peptide from the gill of the Manila clam Ruditapes philippinarum. Kor. J. Fish Aquat. Sci. 49, 137-145.   DOI
14 Shin, Y. P., Lee, J. H., Kim, I. W., Seo, M., Kim, M. A., Lee, H. J., Baek, M., Kim, S. H. and Hwang, J. S. 2020. Anti-inflammatory activity of antimicrobial peptide Papiliocin 3 derived from the swallowtail butterfly, Papilio xuthus. J. Life Sci. 30, 886-895.   DOI
15 Kim, D. G., Shin, J. H. and Kang, M. J. 2018. Antioxidant and anti-inflammatory activities of water extracts and ethanol extracts from Portulaca oleracea L. Kor. J. Food Preserv. 25, 98-106.   DOI
16 Kang, I. J., Chung, C. K., Kim, S. J., Nam, S. M. and Oh, S. H. 2001. Effects of Protaetia orientalis (Gory et Perchlon) larva on the lipid metabolism in carbon tetrachloride administered rats. Appl. Microsc. 31, 9-18.
17 Kawai, T. and Akira, S. 2007. Signaling to NF- κB by toll-like receptors. Trends Mol. Med. 13, 460-469.   DOI
18 Kim, C. H., Lee, Y. K., Jeong, J. W., Hwang, B. S., Jeong, Y. T., Oh, Y. T., Cho, P. Y. and Kang, C. H. 2021. Anti-inflammatory effects of Hemistepta lyrata Bunge in LPS-stimulated RAW264.7 cells through regulation of MAPK signaling pathway. Kor. J. Plant Res. 34, 23-30.   DOI
19 Kim, D. H., Kim, H. J., Lee, J. Y., Hwang, J. S., Kim, I. W., Lee, S. G., Jeong, H. G. and An, B. J. 2013. Anti-inflammatory effect of HaGF peptide of Harmonia axyridis. J. Life Sci. 23, 495-500.   DOI
20 Kim, J. K., Park, S. Y., Choi, H. Y., Jang, M. H., Jung, D. H., Kim, S. C. and Cho, I. J. 2019. Anti-inflammatory effect of Hemistepta lyrata Bunge (Bunge) on LPS-induced inflammation in RAW264.7 cells. Herb. Formula Sci. 27, 7-16.   DOI
21 Kim, M. S., Jeong, J. S., Lee, H. Y., Ju, Y. S., Bae, G. S., Seo, S. W., Cho, I. J., Park, S. J. and Song, H. J. 2011. The anti-inflammatory effect of Achyranthes japonica on lipopolysaccharide-induced inflammatory activity in murine macrophages. Kor. J. Herbology 26, 51-57.   DOI
22 Krishnan, M., Choi, J., Jang, A. and Kim, Y. 2020. A novel peptide antibiotic, Pro10-1D, designed from insect defensin shows antibacterial and anti-inflammatory activities in sepsis models. Int. J. Mol. Sci. 21, 6216.   DOI
23 Lee, H. J., Seo, M., Baek, M., Shin, Y. P., Lee, J. H., Kim, I. W., Hwang, J. S. and Kim, M. A. 2020. Inhibitory effect of Protaetiamycine 6 on neuroinflammation in LPS-stimulated BV-2 microglia. J. Life Sci. 30, 1078-1084.   DOI
24 Sim, S. Y., Ahn, H. Y. and Cho, Y. S. 2019. Effect of Protaetia brevitarsis seulensis larvae fermented by Bacillus subtilis on serum lipid contents and liver morphology in orotic acid-induced fatty-liver model Sprague-Dawley rats. Kor. J. Food Preserv. 26, 821-827.   DOI
25 Sung, G. A., Kim, M. H. and Park, S. N. 2016. Anti-inflammatory and whitening effects of Protaetia brevitarsis Seulensis extracts by oriental conversion methods. J. Soc. Cosmet. Sci. Korea 42, 421-432.   DOI
26 Yi, G., Li, H., Liu, M., Ying, Z., Zhang, J. and Liu, X. 2020. Soybean protein derived peptides inhibit inflammation in LPS induced RAW264.7 macrophages via the suppression of TLR4 mediated MAPK JNK and NF kappa B activation. J. Food Biochem. 44, e13289.
27 Yun, H. J., Lee, Y. J., Kang, M. S. and Baek, J. H. 2009. Inhibitory effect of Coicis semen extract (CSE) on pro-inflammatory mediatory. J. Pediatr. Kor. Med. 23, 159-171.
28 Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.   DOI
29 Chon, J. W., Kweon, H. Y., Jo, Y. Y., Yeo, J. H. and Lee, H. S. 2012. Protective effects of extracts of Protaetia brevitarsis on carbon tetrachloride-induced hepatotoxicity in the mice. J. Seric. Entomol. Sci. 50, 93-100.   DOI
30 Chung, M. Y., Gwon, E. Y., Hwang, J. S., Goo, T. W. and Yun, E. Y. 2013. Analysis of general composition and harmful material of Protaetia brevitarsis. J. Life Sci. 23, 664-668.   DOI
31 Feldmann, M., Brennan, F. M. and Maini, R. N. 1996. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397-440.   DOI
32 Guha, M. and Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94.   DOI
33 Ahn, E. M., Myung, N. Y., Jung, H. A. and Kim, S. J. 2019. The ameliorative effect of Protaetia brevitarsis larvae in HFD-induced obese mice. Food Sci. Biotechnol. 28, 1177-1186.   DOI
34 Xu, L., Pathak, P. S. and Fukumura, D. 2004. Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase signaling pathways contributes to expression of interleukin 8 in human ovarian carcinoma cells. Clin. Cancer Res. 10, 701-707.   DOI
35 Lee, J. Y., Choi, J. W., Lee, M. K., Kim, Y. M., Kim, I. H. and Nam, T. J. 2014. Anti-inflammatory effects of Pyropia yezoensis extract in LPS-stimulated RAW264.7 cells. Kor. J. Fish Aquat. Sci. 47, 757-764.   DOI