• 제목/요약/키워드: 분할자료 회귀분석

검색결과 31건 처리시간 0.021초

고속도로 평면선형상 사고빈도분포 추정을 통한 음이항회귀모형 개발 (기하구조요인을 중심으로) (Fitting Distribution of Accident Frequency of Freeway Horizontal Curve Sections & Development of Negative Binomial Regression Models)

  • 강민욱;도철웅;손봉수
    • 대한교통학회지
    • /
    • 제20권7호
    • /
    • pp.197-204
    • /
    • 2002
  • 교통사고예측 및 예방을 위해서는 실제적으로 도로설계과정에서 제어가 가능한 도로 기하구조요소에 대한 사고관계를 파악함이 타당하다. 즉, 도로의 설계자는 도로건설에 앞서 기하구조요소와 사고와의 관계를 현장자료를 통해 정확히 밝혀 도로설계에 반영해야 한다. 이를 위해, 교통사고의 빈도분포를 박히는 것은 가장 기본이 되는 일이며, 교통사고 예측모형개발에 선행되어야 한다. 일반적으로 교통사고건수의 경우 분산이 평균보다 큰 과분산(overdispersion)의 특징을 가지고 있어 음이항 분포를 따른다고 알려져 있다. 따라서 본 논문은 사고모형의 개발에 앞서, 사고발생지점에 대한 도로설계요소와 기타 잠재적인 사고발생 관련요인이 비교적 잘 파악되어있는 호남고속도로를 중심으로 평면 선형상 곡선부에 대하여 교통사고의 분포를 적합도 검정을 통해 알아보고자 하였다. 사고자료는 한국도로송사의 호남고속도로 5년(1996∼2000)간 자료를 분석에 맞게 정리하였으며, 강민욱과 송봉수(2002)에서 제시한 평면선형에 있어서의 구간분할법을 이용하여 배향곡선구간과 단일곡선구간에 대한 사고분석을 하였다. 적합도 분석결과, 예상대로 음이항분포가 사고건수를 설명하기에 가장 적합한 확률분포로 제시되었으며, 이를 통해 최우추정법을 이용한 음이항회귀모형을 개발하였다. 구간분할법을 적용한 음이항회귀모형의 경우, 기존의 확률회귀토형에 비하여 높은 결정계수를 갖았으며, 모형에서 적용된 기하구조요소로는 차량 노출계수, 곡선반경, 단위거리 당 편경사변화값 등이다.

다변량 분위수 회귀나무 모형에 대한 연구 (Multivariate quantile regression tree)

  • 김재오;조형준;방성완
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.533-545
    • /
    • 2017
  • 분위수 회귀모형은 반응변수의 조건부 분포에 대하여 포괄적이고 유용한 통계적 정보를 제공한다. 그러나 많은 실제 자료는 설명변수와 반응변수가 비선형의 관계를 갖고 있어 전통적인 선형 분위수 회귀모형은 왜곡되고 잘못된 결과를 초래할 수 있다. 또한 자료의 복잡성이 증가하여 반응변수가 여러개인 다변량 자료의 분석에 대한 보다 정확한 예측과 더불어 풍부한 해석에 대한 요구가 증가하고 있다. 이러한 이유로 본 연구에서는 다변량 분위수 회귀나무 모형을 제안하였다. 본 연구에서는 기존의 다변량 회귀나무 모형의 분할변수 선택 알고리즘의 문제점을 지적하고 향상된 분할변수 선택 알고리즘을 제안하였다. 제안한 알고리즘은 합리적인 계산시간으로 적용 가능하며 분할변수 선택에서 편향 발생의 문제를 갖지 않는 동시에 기존 방법보다 더 정확하게 분할변수를 선택할 수 있있다. 본 연구에서는 모의실험과 실증 예제를 통해 제안한 방법의 우수한 성능과 유용성을 확인하였다.

대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형 (Divide and conquer kernel quantile regression for massive dataset)

  • 방성완;김재오
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.569-578
    • /
    • 2020
  • 분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.

분할 역회귀모형에서 차원결정을 위한 점근검정법 (Asymptotic Test for Dimensionality in Sliced Inverse Regression)

  • 박종선;곽재근
    • 응용통계연구
    • /
    • 제18권2호
    • /
    • pp.381-393
    • /
    • 2005
  • 회귀모형에서 필요한 설명변수들의 선형결합들을 탐색하기 위한 방법 중의 하나로 분할역회귀모형을 들 수 있다. 이러한 분할역회귀모형에서 모형에 필요한 설명변수들의 선형결합의 수, 즉 차원을 결정하기 위한 여러 가지의 검정법들이 소개 되었으나 설명변수들의 정규성 가정을 필요로 하거나 다른 제약이 있다. 본 논문에서는 주성분분석에 대한 확률모형을 이 용하여 정규성가정을 필요로하지 않으며 분할의 수에 로버스트한 검정법을 소개하고 모의실험과 실제자료에 대한 적용결과를 통하여 기존의 검정법과 비교하였다.

벌점화 분위수 회귀나무모형에 대한 연구 (Penalized quantile regression tree)

  • 김재오;조형준;방성완
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1361-1371
    • /
    • 2016
  • 분위수 회귀모형은 설명변수가 반응변수의 조건부 분위수 함수에 어떻게 관계되는지 탐색함으로서 많은 유용한 정보를 제공한다. 그러나 설명변수와 반응변수가 비선형 관계를 갖는다면 선형형태를 가정하는 전통적인 분위수 회귀모형은 적합하지 않다. 또한 고차원 자료 또는 설명변수간 상관관계가 높은 자료에 대해서 변수선택의 방법이 필요하다. 이러한 이유로 본 연구에서는 벌점화 분위수 회귀나무모형을 제안하였다. 한편 제안한 방법의 분할규칙은 과도한 계산시간과 분할변수 선택편향 문제를 극복한 잔차 분석을 기반으로 하였다. 본 연구에서는 모의실험과 실증 예제를 통해 제안한 방법의 우수한 성능과 유용성을 확인하였다.

실업률 변동구조의 분석과 전환점 진단 (An Analysis for the Structural Variation in the Unemployment Rate and the Test for the Turning Point)

  • 김태호;황성혜;이영훈
    • 응용통계연구
    • /
    • 제18권2호
    • /
    • pp.253-269
    • /
    • 2005
  • 회귀모형의 기본가정은 추정된 계수들이 표본 내의 모든 관측값에 대해 일정하다는 것이다. 그러나 자료의 구조적 변화로 인해 모형의 추정계수 중 최소한 일부는 상이한 부분집합으로 전체 표본을 분할해야 하는 경우가 현실적으로는 흔히 존재한다. 본 연구에서는 두 회귀모형 계수들간의 동일성을 검정하는 방법을 확대${\cdot}$일반화하여 자료의 분할시점을 탐색하는 검정절차와 결합시킨 후 이를 최근 가장 큰 사회적 문제가 되고 있는 실업률의 구조변화 발생 여부와 시점을 판별하는 실증분석에 적용시켜 보았다.

산림의 임상구조 결정요인 분석과 기후변화에 따른 임상구조 변화 예측 (Analyzing the Impacts of Climate Change on Forest Composition in Korea)

  • 이홍림;권오상
    • 자원ㆍ환경경제연구
    • /
    • 제26권2호
    • /
    • pp.229-255
    • /
    • 2017
  • 본고는 기후변화가 우리나라 산림 구성에 미치는 영향을 파악하기 위해 분할자료 회귀분석을 이용하여 임상모형을 구축하였으며, 기후 및 지형과 같은 자연적 요인 외에도 사회 정책적 요인들이 산림 구성에 어떠한 영향을 미치는지를 실증적으로 분석하였다. 또한 구축한 임상모형을 이용하여 기후변화가 미래 우리나라 산림을 어떻게 변화시킬지를 IPCC 시나리오를 바탕으로 예측해보았다. 분석결과 우리나라의 산림 구성은 자연적 요인 못지않게 사회 정책적 요인들의 영향을 크게 받는 것으로 나타났으며, 미래의 모든 기후변화 시나리오하에서 현재보다 침엽수림 비중이 줄어드는 것으로 나타났다. 특히 IPCC의 RCP 8.5에 해당하는 기후변화가 실현될 경우 2090년대까지 전체 산림면적의 약 10% 정도가 침엽수림에서 활엽수림으로 전환될 것으로 예측되었다. 기후변화로 인한 임상변화는 지역별로 상당히 이질적인 결과를 가져올 것으로 보이며, 현재 침엽수림 비중이 상대적으로 낮은 내륙지역의 침엽수림 면적을 더욱 크게 감소시키는 것으로 나타났다.

사면지형에서 지상라이다 자료의 필터링 기법 (A Filtering Technique of Terrestrial LiDAR Data on Sloped Terrain)

  • 신윤수;최승필;김준성;김욱남
    • 한국측량학회지
    • /
    • 제30권6_1호
    • /
    • pp.529-538
    • /
    • 2012
  • 다중선형 회귀분석에 의하여 도출된 알고리즘을 이용하여 필터링 기법을 제시하였고, 제시된 기법을 이용하여 실제 사면지형을 지상 라이다로 스캔하여 취득된 원시자료에 대하여 필터링을 수행한 결과를 분석하였다. 그 결과 필터링의 정확도를 높이기 위하여 굴곡사면지형의 지성선을 기준으로 관측지역을 두 지역으로 분할하여 필터링을 적용하였을 경우가 사면을 분할하지 않고 필터링을 적용하였을 경우 보다 필터링 정확도가 8.73% 높아진 것으로 나타났다. 또한 굴곡사면 지형에서 사면을 분할하여 복합 필터링을 적용한 경우 전역 필터링이나 지역 필터링만 수행했을 때보다 약 5~7% 정확도가 높아진 것으로 보아 사면에 굴곡이 존재하여 경사가 일정하지 않은 경우 사면을 분할하여 복합 필터링을 수행하는 것이 더 효과적이라고 판단된다.

선형 점자료에 있어서의 시.공 복합 군집의 탐색 (Detecting Space-Time Clusters in Linear Point Data)

  • 홍상기
    • 대한지리학회지
    • /
    • 제33권2호
    • /
    • pp.325-338
    • /
    • 1998
  • 본 연구에서는 시.공 복합적인 선형 점 자료를 대상으로 시간과 공간을 함께 고려했을 때 자료 내에 군집(cluster)-시.공 복합 군집(space-time cluster)-이 존재하는 가를 검증하는 방법에 대해 논의하고, 실제 교통사고지점의 분포자료를 분석하여 군집의 유무를 통계적으로 검증하였다. 통계 분석의 결과 다음과 같은 사실이 확인되었다. 첫째, Knox의 분할표 방법과 Mantel의 역수 변환을 이용한 일반화된 회귀분석방법 모두 임계 거리 및 임계 시간 간격의 선택이 분석결과에 영향을 미친다. 둘째, 이러한 임의성을 극복하기 위해 다양한 임계 거리 및 임계 시간 간격(혹은 부가 상수)에 대해 반복 실험한 결과, 일부 임계값의 조합에서 시간과 공간이 서로 독립적이라는 귀무가설을 기각할 수 있는 증거가 발견되었다. 셋째, 시.공 복합 군집의 파악에 가장 적합한 임계 거리와 임계 시간 간격은 공간적으로는 7000m, 시간적으로는 14일 혹은 21일이다. 마지막으로, 통계 분석과정에서 자료에 존재하는 중복 기록 사고들의 존재가 밝혀짐으로써 시.공 복합군집 검증이 탐험적 자료 분석(exploratory data analysis)의 도구로서 가지는 가치를 확인할 수 있었다.

  • PDF

구간 분할된 레이팅 커브의 천이점 선정을 위한 최적화 알고리즘 개발 (Development of optimization algorithm to set transition point for multi-segmented rating curve)

  • 김연수;노준우;김성훈;유완식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.421-421
    • /
    • 2018
  • 효율적인 수자원 관리를 위하여 전국유역조사, 수자원 장기종합계획 등 다양한 사업이 수행되고 있으며, 이를 위하여 유출해석은 필수적인 항목이라 할 수 있다. 유출해석을 위하여 수문모형 또는 관측소의 유량자료가 활용되고 있으나, 이는 기존에 관측된 유량자료를 바탕으로 구축된 수위-유량관계 곡선식(Rating-curve)을 활용하여 재생산된 자료라 할 수 있다. 즉, 수위자료는 매시간 관측소에서 측정이 되지만, 유량자료의 경우 측정이 어려울 뿐만 아니라 변동성 및 불확실성이 크기 때문에 시계열 수위를 곡신식을 통해 유량으로 변환하여 활용하고 있다. 이와 같이 수위-유량관계 곡선식의 정확성이 수문자료 생산에 핵심 요소임에도 불구하고 이에 대한 연구는 제한적이며, 특히 홍수터 등의 영향을 고려하여 분할된 곡선의 천이점 접합시 곡선식의 정확도 향상을 위한 연구도 드문 편이다. 따라서 본 연구에서는 구간 분할된 곡선의 최적 천이점 선정을 위하여 Particle Swarm Optimization(PSO)기법을 활용하였으며, 총 5개 구간까지 구간별 목적함수로 RMSE, RSR, 결정계수 적용시 특성변화에 대한 연구를 수행하였다. 구간에 대하여 절대적인 오차를 산정하는 RMSE를 활용하는 경우 저수위 부분에 대한 오차가 증가하는 것을 확인할 수 있었으며, 상대적인 오차인 RSR, 결정계수를 활용하는 경우 전체 구간에 대한 오차를 보완할 수 있는 것으로 나타났다. PSO기법을 활용하여 도출된 곡선식에 대해서는 구간 및 전체구간에 대한 오차(RMSE, 결정계수, RSR, MAPE)를 활용하여 불확실성을 검토할 수 있도록 하였고, 잔차분석을 통한 이상치 및 회귀곡선에 대한 정규성 검토를 수행할 수 있는 툴을 개발하였다. 레이팅 커브를 작성하는데 있어 최적화 알고리즘을 활용하여 구간분할시 천이점 선정의 자동화로 천이점 선정에 소요되는 시간을 대폭 감축할 수 있을 뿐만 아니라, 구간별 오차를 종합적으로 고려하여 우수한 품질의 레이팅 커브를 도출할 수 있는 기반을 구축하였다.

  • PDF