Acknowledgement
Supported by : 한국연구재단
References
- Asuncion, A. and Newman, D. (2007). UCI machine learning repository, Available at ttp://www.ics.uci.edu/-mlearn/MLRepository.tml.
- Breiman, L., Friedman, J., Stone, C. and Olshen, R. (1984). Classification and regression trees, Chapman & Hall/CRC, Belmont, CA.
- Chaudhuri, P. and Loh, W. Y. (2002). Nonparametric estimation of conditional quantiles using quantile regression trees. Bernoulli , 8, 561-576.
- De'ath, G. (2012). Mvpart: multivariate partitioning. R package version 1.6-0.
- Eo, SH. and Cho, H. (2014). Tree-structured mixed-effects regression modeling for longitudinal data. Journal of Computational and Graphical Statistics, 23, 740-760. https://doi.org/10.1080/10618600.2013.794732
- Hallin, M., Lu, Z. and Yu, K. (2009). Local linear spatial quantile regression. Bernoulli, 15, 659-686. https://doi.org/10.3150/08-BEJ168
- Richey, J. and Jung, K. H. (2014). Intergenerational economic mobility in Korea using a quantile regression analysis. Journal of the Korean Data & Information Science Society, 25, 715-725. https://doi.org/10.7465/jkdi.2014.25.4.715
- Kim, H. and Loh, W. Y. (2011). Classification trees with unbiased multiway splits. Journal of the American Statistical Association, 96, 589-604.
- Koenker, R. (2005). Quantile regression, Cambridge University Press, Cambridge, UK.
- Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
- Koenker R. and Mizera I. (2004). Penalized triograms: total variation regularization for bivariate smoothing. Journal of the Royal Statistical Society B, 66, 145-163. https://doi.org/10.1111/j.1467-9868.2004.00437.x
- Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces. Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
- Liu Y. and Wu Y. (2011). Simultaneous multiple non-crossing quantile regression estimation using kernel constraints. Journal of Nonparametric statistics, 23, 415-437. https://doi.org/10.1080/10485252.2010.537336
- Loh, W. Y. (2002). Regression tress with unbiased variable selection and interaction detection. Statistica Sinica, 12, 361-386.
- Loh, W. Y. (2009). Improving the precision of classification trees. The Annals of Applied Statistics, 3, 1710-1737. https://doi.org/10.1214/09-AOAS260
- Loh, W. Y. and Wei, Z. (2013). Regression trees for longitudinal and multiresponse data. The Annals of Applied Statistics, 7, 495-522. https://doi.org/10.1214/12-AOAS596
- Loh, W. Y. and Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis. Journal of the American Statistical Association, 83, 715-725. https://doi.org/10.1080/01621459.1988.10478652
- Segal, M. (1992). Tree-structured methods for longitudinal data. Journal of the American Statistical Association, 87, 407-418. https://doi.org/10.1080/01621459.1992.10475220
- Shim, J. Y. and Hwang, C. H. (2012). M-quantile kernel regression for small area estimation. Journal of the Korean Data & Information Science Society, 23, 749-756. https://doi.org/10.7465/jkdi.2012.23.4.749
- Yu, K. and Jones, M. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237. https://doi.org/10.1080/01621459.1998.10474104
- Zhang, H. (1998). Classification trees for multiple binary responses. Journal of the American Statistical Association, 93, 180-193. https://doi.org/10.1080/01621459.1998.10474100
- Zhang, H. and Ye, Y. (2008). A tree-based method for modeling a multivariate ordinal response. Statistics and its Interface, 1, 169. https://doi.org/10.4310/SII.2008.v1.n1.a14