• Title/Summary/Keyword: 분류 코드

Search Result 613, Processing Time 0.02 seconds

IoT Malware Detection and Family Classification Using Entropy Time Series Data Extraction and Recurrent Neural Networks (엔트로피 시계열 데이터 추출과 순환 신경망을 이용한 IoT 악성코드 탐지와 패밀리 분류)

  • Kim, Youngho;Lee, Hyunjong;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.197-202
    • /
    • 2022
  • IoT (Internet of Things) devices are being attacked by malware due to many security vulnerabilities, such as the use of weak IDs/passwords and unauthenticated firmware updates. However, due to the diversity of CPU architectures, it is difficult to set up a malware analysis environment and design features. In this paper, we design time series features using the byte sequence of executable files to represent independent features of CPU architectures, and analyze them using recurrent neural networks. The proposed feature is a fixed-length time series pattern extracted from the byte sequence by calculating partial entropy and applying linear interpolation. Temporary changes in the extracted feature are analyzed by RNN and LSTM. In the experiment, the IoT malware detection showed high performance, while low performance was analyzed in the malware family classification. When the entropy patterns for each malware family were compared visually, the Tsunami and Gafgyt families showed similar patterns, resulting in low performance. LSTM is more suitable than RNN for learning temporal changes in the proposed malware features.

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.

Malware Family Recommendation using Multiple Sequence Alignment (다중 서열 정렬 기법을 이용한 악성코드 패밀리 추천)

  • Cho, In Kyeom;Im, Eul Gyu
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Malware authors spread malware variants in order to evade detection. It's hard to detect malware variants using static analysis. Therefore dynamic analysis based on API call information is necessary. In this paper, we proposed a malware family recommendation method to assist malware analysts in classifying malware variants. Our proposed method extract API call information of malware families by dynamic analysis. Then the multiple sequence alignment technique was applied to the extracted API call information. A signature of each family was extracted from the alignment results. By the similarity of the extracted signatures, our proposed method recommends three family candidates for unknown malware. We also measured the accuracy of our proposed method in an experiment using real malware samples.

Development Research of An Efficient Malware Classification System Using Hybrid Features And Machine Learning (하이브리드 특징 및 기계학습을 활용한 효율적인 악성코드 분류 시스템 개발 연구)

  • Yu, Jung-Been;Oh, Sang-Jin;Park, Leo-Hyun;Kwon, Tae-Kyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1161-1167
    • /
    • 2018
  • In order to cope with dramatically increasing malware variant, malware classification research is getting diversified. Recent research tend to grasp individual limits of existing malware analysis technology (static/dynamic), and to change each method into "hybrid analysis", which is to mix different methods into one. Futhermore, it is applying machine learning to identify malware variant more accurately, which are difficult to classify. However, accuracy and scalability of trade-off problems that occur when using all kinds of methods are not yet to be solved, and it is still an important issue in the field of malware research. Therefore, to supplement and to solve the problems of the original malware classification research, we are focusing on developing a new malware classification system in this research.

Analysis of Malware Group Classification with eXplainable Artificial Intelligence (XAI기반 악성코드 그룹분류 결과 해석 연구)

  • Kim, Do-yeon;Jeong, Ah-yeon;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.559-571
    • /
    • 2021
  • Along with the increase prevalence of computers, the number of malware distributions by attackers to ordinary users has also increased. Research to detect malware continues to this day, and in recent years, research on malware detection and analysis using AI is focused. However, the AI algorithm has a disadvantage that it cannot explain why it detects and classifies malware. XAI techniques have emerged to overcome these limitations of AI and make it practical. With XAI, it is possible to provide a basis for judgment on the final outcome of the AI. In this paper, we conducted malware group classification using XGBoost and Random Forest, and interpreted the results through SHAP. Both classification models showed a high classification accuracy of about 99%, and when comparing the top 20 API features derived through XAI with the main APIs of malware, it was possible to interpret and understand more than a certain level. In the future, based on this, a direct AI reliability improvement study will be conducted.

Generating Malware DNA to Classify the Similar Malwares (악성코드 DNA 생성을 통한 유사 악성코드 분류기법)

  • Han, Byoung-Jin;Choi, Young-Han;Bae, Byung-Chul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.679-694
    • /
    • 2013
  • According to the national information security white paper 2013, the number of hacking attempt in 2012 is 17,570 which is increased by 67.4% than in 2011, and it has been increasing year after year. The cause of this increase is considered as pursuit of monetary profit and diversification techniques of infection. However, because the development of malicious code faster than the increase in the number of experts to analyze and respond the malware, it is difficult to respond to security threats due to malicious code. So, the interest on automatic analysis tools is increasing. In this paper, we proposed the method of malware classification by similarity using malware DNA. It helps the experts to reduce the analysis time, to increase the correctness. The proposed method generates 'Malware DNA' from extracted features, and then calculates similarity to classify the malwares.

A Classification Method for Executable Files based on Comparison of Undocumented Information in the PE Header (실행파일 헤더내 문서화되지 않은 정보의 비교를 통한 실행파일 분류 방법)

  • Kim, Jung-Sun;Kang, Jung-Min;Kim, Kang-San;Shin, Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • File identification and analysis is an important process of computer forensics, since the process determines which subjects are necessary to be collected and analyzed as digital evidence. An efficient file classification aids in the file identification, especially in case of copyright infringement where we often have huge amounts of files. A lot of file classification methods have been proposed by far, but they have mostly focused on classifying malicious behaviors based on known information. In copyright infringement cases, we need a different approach since our subject includes not only malicious codes, but also vast number of normal files. In this paper, we propose an efficient file classification method that relies on undocumented information in the header of the PE format files. Out method is useful in copyright infringement cases, being applied to any sort of PE format executable file whether the file is malicious, packed, mutated, transformed, virtualized, obfuscated, or not.

Research on Malware Classification with Network Activity for Classification and Attack Prediction of Attack Groups (공격그룹 분류 및 예측을 위한 네트워크 행위기반 악성코드 분류에 관한 연구)

  • Lim, Hyo-young;Kim, Wan-ju;Noh, Hong-jun;Lim, Jae-sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.193-204
    • /
    • 2017
  • The security of Internet systems critically depends on the capability to keep anti-virus (AV) software up-to-date and maintain high detection accuracy against new malware. However, malware variants evolve so quickly they cannot be detected by conventional signature-based detection. In this paper, we proposed a malware classification method based on sequence patterns generated from the network flow of malware samples. We evaluated our method with 766 malware samples and obtained a classification accuracy of approximately 40.4%. In this study, malicious codes were classified only by network behavior of malicious codes, excluding codes and other characteristics. Therefore, this study is expected to be further developed in the future. Also, we can predict the attack groups and additional attacks can be prevented.

A Study on the Image-Based Malware Classification System that Combines Image Preprocessing and Ensemble Techniques for High Accuracy (높은 정확도를 위한 이미지 전처리와 앙상블 기법을 결합한 이미지 기반 악성코드 분류 시스템에 관한 연구)

  • Kim, Hae Soo;Kim, Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.225-232
    • /
    • 2022
  • Recent development in information and communication technology has been beneficial to many, but at the same time, malicious attack attempts are also increasing through vulnerabilities in new programs. Among malicious attacks, malware operate in various ways and is distributed to people in new ways every time, and to solve this malware, it is necessary to quickly analyze and provide defense techniques. If new malware can be classified into the same type of malware, malware has similar behavioral characteristics, so they can provide defense techniques for new malware using analyzed malware. Therefore, there is a need for a solution to this because the method of accurately and quickly classifying malware and the number of data may not be uniform for each family of analyzed malware. This paper proposes a system that combines image preprocessing and ensemble techniques to increase accuracy in imbalanced data.

모바일 악성코드의 전략과 사례 분석을 통한 모바일 악성코드 진단법

  • Jang, SangKeun
    • Review of KIISC
    • /
    • v.23 no.2
    • /
    • pp.14-20
    • /
    • 2013
  • 2011년부터 모바일 악성코드가 급격하게 증가하는 상황 속에서 2012년 말부터는 국내(한국)의 특성에 맞춘 모바일 악성코드들이 끊임없이 발생되고 있고 실질적 피해 또한 계속 발생되고 있다. 이에 본 논문에서는 이러한 모바일 악성코드들의 진화 과정, 모바일 악성코드의 특징, 모바일 악성코드의 분류에 대해서 다루며 모바일 악성코드가 이용하는 기술적 전략과 행위 그리고 사회공학적 기법들을 다룬다. 또한 모바일 악성코드가 제작되어 지고 있는 목적이 무엇인지 실제 피해 사례 분석을 통해 알아보고 어떻게 모바일 악성코드를 진단할 것인지를 살펴본다.