• Title/Summary/Keyword: 복합재료판

Search Result 535, Processing Time 0.021 seconds

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Surface Fracture Response of Glass Eabric/Epoxy Lamina-Bonded Glass Plates to Impact with a Small-Diameter Steel Ball (직물형 유리섬유/에폭시 복합재료로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2000
  • A small diameter steel-ball impact experiment was performed to study the impact resistance of the surface of glass plates bonded with glass fabric/epoxy lamina. Five kinds of materials were used in this study: soda-lime glass plates, glass/epoxy lamina(one layer)-bonded and unbonded glass plates, glass/epoxy lamina(three layers)-bonded and unbonded glass plates. The range of impact velocity was 40 120m/s. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates. With increasing impact velocity, various types of surface cracks such as ring, cone, radial and lateral cracks took place in the interior near the impacted site of glass plates. The cracks drastically decreased with glass/epoxy lamina coating. The surface fracture behavior could be evaluated using the maximum stress and the absorbed fracture energy.

  • PDF

Interlaminar Fracture Toughness for Composite Materials (복합재료의 층간파괴인성)

  • 이강용;권순만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1479-1485
    • /
    • 1991
  • 본 연구에서는 고차판이론(higher order shear deformable plate theory)을 사용하여 DCB시편을 보형상이 아닌 실제의 얇은 판으로 해석하여 새로운 에너지해방률 식을 제시하고자 한다.한편, 이의 타당성을 입증하기 위하여 Gr/Ep 및 APC-2 복합 재료로 ASTM D30.02 round robin의 제안 방법에 의해 층간파괴인성치를 구하고, 또 이 강용이 제안한 Ae법에 의한 금속의 파괴인성치 결정법을 참고로 하여 미세파괴 초창기 의 층간파괴인성치를 결정하여 이론결과와 비교 검토한다.

Optimal Methodology of a Composite Leaf Spring with a Multipurpose Small Commercial Vans (다목적 소형 승합차 복합재 판 스프링의 적층 최적화 기법)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.243-250
    • /
    • 2018
  • In this paper, design technique using genetic algorithms(GA) for design optimization of composite leaf springs is presented here. After the initial design has been validated by the car plate spring as a finite element model, the genetic algorithm suggests the process of optimizing the number of layers of composite materials and their angles. Through optimization process, the weight reduction process of leaf springs and the number of repetitions are compared to the existing algorithm results. The safety margin is calculated by organizing a finite element model to verify the integrity of the structure by applying an additive sequence optimized through the genetic algorithm to the structure. When GA is applied, layer thickness and layer angle of complex leaf springs have been obtained, which contributes to the achievement of minimum weight with appropriate strength and stiffness. A reduction of 65.6% original weight is reached when a leaf steel spring is replaced with a leaf composite spring under identical requirement of design parameters and optimization.

Characteristic of Impact Behavior of Laminated Composite Plates due to Initial Stress (복합적층판의 초기응력에 의한 충격거동 특성)

  • Kim, Seung--Deog;Kang, Joo-Won;Kwon, Suk-Jun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.77-83
    • /
    • 2011
  • Laminated composite plates have shown their superiority over metals in applications requiring high specific strength, high specific modulus, and so on. Therefore, they have used in various industry. However, they have poor resistance to impact compared to typical metal materials. To resolve this problem by many researchers for a variety of studies have been attempted. This study investigates characteristic of impact behavior of laminated composite plates due to initial stress. Using finite element program which involved the indentation law, we investigate characteristic of impact behavior of laminated composite plates due to initial stress.

Variation of the Group Velocity of Lamb Wave $S_o$ Mode with the Propagating Direction in the Laminated Unidirectional CFRP Plates (단일방향 탄소섬유복합재료 적층 판에서 전파 방향에 따른 램파 $S_o$ 모드의 군속도의 변화)

  • Kim Young H.;Lee Seung Seok;Kim Ho Chul;Lee Jeong Ki
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In this paper, the group velocity dispersion curves of the $S_o$ symmetric mode in unidirectional CFRP plate was calculated as varying the propagating direction. The group velocity curve was obtained with the group velocities of the $S_o$ symmetric mode corresponding to 0.2 MHz-mm under the first cut-off frequency in the dispersion curves, and corrected by introducing the slowness curve. The velocities of the $S_o$ symmetric mode in the unidirectional CFRP plate were measured as varying the propagating direction and compared with the col?rotted group velocity curve. The measured velocities were good agreement with the corrected group velocity curve except near the fiber direction which was called the cusp region. It implies that the direction of the group velocities incline toward the fiber direction of the unidirectional CFRP plates when the propagation direction is not accorded with the principal axis. It is supposed that this phenomenon rerults from the preferential propagating the energy toward the direction with the faster propagation velocity.

Compressive and failure behaviour of composite egg-box panel using non-orthogonal constitutive model (비 직교 물성 모델을 이용한 복합재료 계란판의 압축거동 및 파손)

  • Hahn, Young-Won;Chang, Seung-Hwan;Ryu, Yong-Mun;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.20-26
    • /
    • 2009
  • In the current study, thermoforming and compression analysis were carried out for the woven composite egg-box panel with the non-orthogonal constitutive material model, which is proposed by Xue et al. The material model is implemented in commercial engineering software, LS-DYNA, with a user subroutine. Directional properties in non-orthogonal coordinates are determinedusing the deformation gradient tensor and the material modulus matrix in local coordinate is updated at eaeh corresponding time step. After the implemented non-orthogonal constitutive model is verified by the bias extension test, the egg-box panel simulations are performed. The egg-box panel simulations are divided into two categories: thermoforming (draping) and crushing. The finite element model for crushing analysiscan be obtained using the displacement result of thermoforming process.

A basic study on the prediction of local material behavior of composite bone plate for metaphyseal femur fractures (대퇴골 골 간단 부 골절치료용 복합재료 고정판의 국부적 거동 예측을 위한 기초 연구)

  • Yoo, Seong-Hwan;Son, Dae-Sung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.6-11
    • /
    • 2011
  • This paper presents an estimating method for local property changes and failure prediction of composite materials experiencing large shear deformation during draping process. The bone plate for the metaphyseal femur fracture was chosen to apply the presented method because it has complex geometry. The local property changes due to macro-/microscopic deformations of fabric composites during draping process were evaluated by various tests and the result was applied to predict static/fatigue behaviors of the bone plate. This paper was expected to present useful information on the design of composite structures with complex geometry and their performance evaluation.