Browse > Article
http://dx.doi.org/10.7234/composres.2021.34.3.148

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery  

Lim, Jun Woo (Graduate School of Flexible and Printable Electronics & Department of Mechatronics Engineering & LANL-CBNU Engineering Institute-Korea, Jeonbuk National University)
Publication Information
Composites Research / v.34, no.3, 2021 , pp. 148-154 More about this Journal
Abstract
Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.
Keywords
Vanadium Redox Flow Battery; Carbon Fiber Composite; Bipolar Plate; Polyester Fabric; Area Specific Resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lim, J.W., Lee, D., Kim, M., Choe, J., Nam, S., and Lee, D.G., "Composite Structures for Proton Exchange Membrane Fuel Cells (PEMFC) and Energy Storage Systems (ESS): Review," Composite Structures, Vol. 134, 2015, pp. 927-949.   DOI
2 Lee, D., Lim, J.W., Nam, S., Choi, I., and Lee, D.G., "Method for Exposing Carbon Fibers on Composite Bipolar Plates," Composite Structures, Vol. 134, 2015, pp. 1-9.   DOI
3 Lee, D., and Lee, D.G., "Electro-mechanical Properties of the Carbon Fabric Composites with Fibers Exposed on the Surface," Composite Structures, Vol. 140, 2016, pp. 77-83.   DOI
4 Louis, M., Joshi, S.P., and Brockmann, W., "An Experimental Investigation of Through-thickness Electrical Resistivity of CFRP Laminates," Composites Science and Technology, Vol. 61, No. 6, 2001, pp. 911-919.   DOI
5 Inagaki, M., Iwashita, N., and Kouno, E., "Potential Change with Intercalation of Sulfuric Acid into Graphite by Chemical Oxidation," Carbon, Vol. 28, No. 1, 1990, pp. 49-55.   DOI
6 Lim, J.W., and Lee, D.G., "Carbon Fiber/polyethylene Bipolar Plate-carbon Felt Electrode Assembly for Vanadium Redox Flow Batteries (VRFB)," Composite Structures, Vol. 134, 2015, pp. 483-492.   DOI
7 Kim, S., Thomsen, E., Xia, G., Nie, Z., Bao, J., Recknagle, K., Wang, W., Viswanathan, V., Luo, Q., Wei, X., Crawford, A., Coffey, G., Maupin, G., and Sprenkle, V., "1 kW/1 kWh Advanced Vanadium Redox Flow Battery Utilizing Mixed Acid Electrolytes," Journal of Power Sources, Vol. 237, 2013, pp. 300-309.   DOI
8 Lim, J.W., and Lee, D.G., "Development of Composite-metal Hybrid Bipolar Plates for PEM Fuel Cells," International Journal of Hydrogen Energy, Vol. 37, No. 17, 2012, pp. 12504-12512.   DOI
9 Skyllas-Kazacos, M., SECONDARY BATTERIES - FLOW SYSTEMS | Vanadium Redox-Flow Batteries, Elsevier, Amsterdam, 2009, pp. 444-453.
10 Lee, D., Choe, J., Nam, S., Lim, J.W., Choi, I., and Lee, D.G., "Development of Non-woven Carbon Felt Composite Bipolar Plates Using the Soft Layer Method," Composite Structures, Vol. 160, 2017, pp. 976-982.   DOI
11 Avasarala, B., and Haldar, P., "Effect of Surface Roughness of Composite Bipolar Plates on the Contact Resistance of a Proton Exchange Membrane Fuel Cell," Journal of Power Sources, Vol. 188, No. 1, 2009, pp. 225-229.   DOI
12 Choe, J., Kim, K.H., and Lee, D.G., "Corrugated Carbon/epoxy Composite Bipolar Plate for Vanadium Redox Flow Batteries," Composite Structures, Vol. 119, 2015, pp. 534-542.   DOI
13 Lee, D., and Lee, D.G., "Carbon Composite Bipolar Plate for High-temperature Proton Exchange Membrane Fuel Cells (HT-PEMFCs)," Journal of Power Sources, Vol. 327, 2016, pp. 119-126.   DOI
14 Du, L., and Jana, S.C., "Highly Conductive Epoxy/graphite Composites for Bipolar Plates in Proton Exchange Membrane Fuel Cells," Journal of Power Sources, Vol. 172, No. 2, 2007, pp. 734-741.   DOI
15 Yu, V.K., and Chen, D., "Peak Power Prediction of a Vanadium Redox Flow Battery," Journal of Power Sources, Vol. 268, 2014, pp. 261-268.   DOI
16 Park, S.-K., Shim, J., Yang, J. H., Jin, C.-S., Lee, B.S., Lee, Y.-S., Shin, K.H., and Jeon, J.-D., "Effect of Inorganic Additive Sodium Pyrophosphate Tetrabasic on Positive Electrolytes for a Vanadium Redox Flow Battery," Electrochimica acta, Vol. 121, 2014, pp. 321-327.   DOI
17 Kim, K.H., Kim, B.G., and Lee, D.G., "Development of Carbon Composite Bipolar Plate (BP) for Vanadium Redox Flow Battery (VRFB)," Composite Structures, Vol. 109, 2014, pp. 253-259.   DOI
18 Xu, Q., Zhao, T.S., and Zhang, C., "Effects of SOC-dependent Electrolyte Viscosity on Performance of Vanadium Redox Flow Batteries," Applied Energy, Vol. 130, 2014, pp. 139-147.   DOI
19 Bartolozzi, M., "Development of Redox Flow Batteries. A Historical Bibliography," Journal of Power Sources, Vol. 27, No. 3, 1989, pp. 219-234.   DOI
20 Yu, H.N., Lim, J.W., Kim, M.K., and Lee, D.G., "Plasma Treatment of the Carbon Fiber Bipolar Plate for PEM Fuel Cell," Composite Structures, Vol. 94, No. 5, 2012, pp. 1911-1918.   DOI