DOI QR코드

DOI QR Code

Optimal Methodology of a Composite Leaf Spring with a Multipurpose Small Commercial Vans

다목적 소형 승합차 복합재 판 스프링의 적층 최적화 기법

  • Ahn, Sang Ho (Department of Mechanical & Automotive Engineering, Shinhan University)
  • 안상호 (신한대학교 기계자동차 융합공학과)
  • Received : 2018.06.27
  • Accepted : 2018.08.27
  • Published : 2018.10.31

Abstract

In this paper, design technique using genetic algorithms(GA) for design optimization of composite leaf springs is presented here. After the initial design has been validated by the car plate spring as a finite element model, the genetic algorithm suggests the process of optimizing the number of layers of composite materials and their angles. Through optimization process, the weight reduction process of leaf springs and the number of repetitions are compared to the existing algorithm results. The safety margin is calculated by organizing a finite element model to verify the integrity of the structure by applying an additive sequence optimized through the genetic algorithm to the structure. When GA is applied, layer thickness and layer angle of complex leaf springs have been obtained, which contributes to the achievement of minimum weight with appropriate strength and stiffness. A reduction of 65.6% original weight is reached when a leaf steel spring is replaced with a leaf composite spring under identical requirement of design parameters and optimization.

본 논문에서는 복합재 판 스프링의 설계 최적화를 위해 유전자 알고리즘을 사용한 적층 최적화 과정을 제시하였다. 다목적 소형 승합 자동차 판 스프링을 유한요소모델로 구성하여 초기 설계를 검증한 이후, 유전자 알고리즘을 통해 복합재료의 적층수와 적층각도를 최적화하는 과정을 기술하였다. 최적화 과정을 통해 판 스프링의 하중 감소과정, 반복수에 따라 강 구조의 해석 결과와 비교하였다. 더불어 유전자 알고리즘을 통해 최적화된 적층 시퀀스를 구조에 적용하여 구조의 건전성을 검증하기 위해 유한요소 모델로 구성하여 안전여유를 계산하였다. GA를 적용할 때, 복합재료 판 스프링의 적층 두께와 적층 각을 획득하였으며, 이는 적절한 강도와 강성으로 최소 무게를 달성하는데 기여한다. 동일한 설계 매개 변수 및 최적화 조건에서 강철된 판 스프링을 복합재 판 스프링으로 교체하면 65.6%의 중량이 감소한다.

Keywords

References

  1. Fu, X., Ricci, S., Bisagni, C. (2015) Minimumweight Design for Tthree Dimensional Woven Composite Stiffened Panels using Neural Networks and Genetic Algorithms, Compos. Struct., 134(15), pp.708-715. https://doi.org/10.1016/j.compstruct.2015.08.077
  2. Herath, M.T., Natarajan, S., Prusty, B.G., John, N.S. (2015) Isogeometric Analysis and Genetic Algorithm for Shape-adaptive Composite Marine Propellers, Comput. Methods Appl. Mech. & Eng., 284(1), pp.835-860. https://doi.org/10.1016/j.cma.2014.10.028
  3. Jang, J.H., Kim. J.H. (2014) Design Optimization of Slender Elastic Beam with Initial Twist using Genetic Algorithms and Finite Element Analysis, J. Mech.l Sci. & Tech., 28(5), pp.1811-1818. https://doi.org/10.1007/s12206-014-0328-7
  4. Kalantari, M., Nami, M.R., Kadivar, M.H. (2010) Optimization of Composite Sandwich Panel Against Impact using Genetic Algorithm, Int. J. Impact Eng., 37(6), pp.599-604. https://doi.org/10.1016/j.ijimpeng.2009.12.002
  5. Kang, S., Lee, J.M., Jang, J., Lim, W., Lee, T.H. (2014) Desing Optimization of Multi-leaf Spring with Finite Element Analysis for Special Purpose Vehicle, Int. J. Automot. Technol. Conf., pp.900-905.
  6. Moon, I.D., Oh, S.H., Oh, C.Y. (2004) Modeling of a Multi-Leaf Spring for Dynamic Characteristics Analysis of a Large Truck, J. Korean Soc. Precis. Eng., 21(10), pp.147-153.
  7. Pathan, M.V, Patsias, S., Tagarielli, V.L. (2018) A Real-coded Genetic Algorithm for Optimizing the Damping Response of Composite Laminates, Comput. & Struct., 198, pp.51-60.
  8. Qian, C., Shi, W., Chen, Z., Yang, S., Song, Q. (2017) Fatigue Reliability Design of Composite Leaf Springs based on Ply Scheme Optimization, Compos. Struct., 168(15), pp.40-46. https://doi.org/10.1016/j.compstruct.2017.02.035
  9. Ramires, F.B, Andrade, SALd., Vellasco, PCGdS., Lima, LROd. (2012) Genetic Algorithm Optimization of Composite and Steel Endplate Semi-rigid Joints, Eng. Struct., 45, pp.177-191. https://doi.org/10.1016/j.engstruct.2012.05.051
  10. Song, S.M., Kim, C.W. (2015) Optimum Design of Composite Leaf Spring using Vehicle Dynamics Analysis, Altair Conference.
  11. Srinivas, N., Kalyanmoy, D. (1994) Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms, Evolut. Comput. 2(3), pp.221-248. https://doi.org/10.1162/evco.1994.2.3.221
  12. Won, Y.-J., Lee, S.-Y. (2013) A Study on the Structural Optimum Design Method of Composite Rotor Blade Cross-Section using Genetic Algorithm, J. Korean Soc. Aeronaut. & Space Sci., 41(4), pp.275-283. https://doi.org/10.5139/JKSAS.2013.41.4.275
  13. Yi, J.-H., Sale, D. (2012) Blade Shape Optimization of Wind Turbines using Genetic Algorithms and Pattern Search Method, J. Korean Soc. Civil Eng., A, 32(6A), pp.369-378. https://doi.org/10.12652/Ksce.2012.32.6A.369