• Title/Summary/Keyword: 보존적분

Search Result 50, Processing Time 0.019 seconds

A Fast MSRCR Algorithm Using Hierarchical Discrete Correlation (HDC를 이용한 고속 MSRCR 알고리즘)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1621-1629
    • /
    • 2010
  • This paper presents an improved fast MSRCR algorithm that MSRs are commonly adopted at tone mapping in color vision. Conventional MSRs consist of three SSRs, which use three Gaussian functions with different scales as those surround ones. This convolution processes require much computation load. Therefore, the proposed algorithm adopts a hierarchical discrete correlation which is equivalent to Gaussian function and the Retinex process is only applied to the luminance channel in order to get a fast processing. A simple color preservation scheme is applied to the Retinex output from the luminance channel in the proposed MSRCR algorithm. Experimental results show that the proposed algorithm required less number of oprations and computation time about 1/9.5 and 1/3.5 times, respectively, than those of the simplest MSR and was equivalent to conventional MSRs.

Pressure Control of a Variable Thrust Solid Propulsion System Using On-Off Controllers (On-Off 제어기를 이용한 가변추력 고체추진 기관의 압력제어)

  • Kwon, Soon-Kyu;Kim, Young-Seok;Ko, Sang-Ho;Suh, Seok-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.942-948
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we introduce controllers for combustion chamber pressure using on-off control techniques which have been known for relatively easy implementation and energy efficiency. For this, we use a simple pressure change model by considering only mass conservation within the combustion chamber and we design a classical controllers and on-off controllers with are Pulse Width Modulation(PWM) and Pulse Width Pulse Frequency Modulation (PWPFM). Then we compare the performance results of the controllers through numerical simulations.

  • PDF

Submerged Buoyant Jets in Stagnant Receiving Water with Depth Fluctuation (Zone of Flow Establishment) (변동수심(變動水深)의 수역(水域)에서 수중부력(水中浮力)?의 거동(擧動) - 발달과정(發達過程)흐름영역(領域) -)

  • Yoon, Tae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.75-81
    • /
    • 1985
  • The behavior of a plane buoyant jet within the zone of flow establishment(ZFE) which is discharged vertically upward into a stagnant uniform environment, is analyzed by the integral equations of mass, momentum and tracer conservation. The analysis includes the spreading ratio with Froude number and geometry of the potential core of ZFE and the length of ZFE. The central velocity at the end of ZFE is found to be influenced significantly by buoyancy, especially at low discharge Froude number. The results provide the necessary initial conditions for the investigation of the zone of established flow.

  • PDF

The Flow Analysis of Supercavitating Cascade by Linear Theory (선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.79-86
    • /
    • 1996
  • In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations.

  • PDF

EFFECTS OF DENSITY DISTRIBUTION OF THE WIND ON THE LINE PROFILES FOR 32 CYG (Alfven파에 의한 항성풍 밀도분포가 32 Cyg의 선윤곽에 미치는 효과)

  • 김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 1997
  • We have calculated the velocity distribution of wind driven by Alfven waves. The assumed initial number density of wind can affect the line profiles because it produces the change in the velocity distribution under the mass conservation. Initial density $N_O=5.5{\times}10^{12}/cm^3$ is chosen for a proper initial density from the observation by Schroder(1986). The wind models for $N_O=10^9,10^{10},10^{11},5.5{\times}10^{12}/cm^3$ are calculated at ${phi}$=0.06 and ${phi}$=0.78. The line profiles for lower initial density show the strong emissions and narrow absorptions because of their steeper velocity gradients.

  • PDF

Numerical Study of Turbulence Modeling for Analysis of Combustion Instabilities in Rocket Motor (로켓엔진의 연소 불안정 해석을 위한 난류 모델링의 수치적 연구)

  • 임석규;노태성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • A numerical analysis of unsteady motion in solid rocket motors with a nozzle has been conducted. The numerical formulation including modified $\kappa$-$\varepsilon$ turbulence model treats the complete conservation equation for the gas phase and the one-dimensional equations in the radial direction for the condensed phase. A fully coupled implicit scheme based on a dual time-stepping integration algorithm has been adopted to solve the governing equations. After obtaining a steady state solution, pulse and periodic oscillations of pressure are imposed at the head-end to simulate acoustic oscillations of a travelling-wave motion in the combustion chamber. Various steady and unsteady state features in the combustion chamber of a rocket motor has been analyzed as results of numerical calculations.

A Fundamental Analysis of an Interface Crack by Crack Energy Density (균열에너지밀도에 의한 이종재 계면균열의 기초적 검토)

  • 권오헌;도변승언;서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1458-1467
    • /
    • 1992
  • Recently, the composite materials have been researched actively by many researchers because of its useful properties. Especially, an interface crack on the dissimilar material exposes the behavior of the mixed mode crack even though under only the tension stress. In the previous papers, crack energy density(CED) was shown as the crack behavior evaluation parameter which can be expressed consistently from the onset until a final fracture. In a present paper, the basic properties of CED on the interface crack are examined because the results by CED at the homogeneous material above are also expected to be held at the dissimilar material. And we proposed that the contribution of each mode of CED can be separated and be evaluated. Furthermore, the total CED and contribution of each mode are evaluated by domain integral through a finite element analysis at the elastic crack model and the basic examination are carried out.

Propagation Analysis of Dam Break Wave using Approximate Riemann solver (Riemann 해법을 이용한 댐 붕괴파의 전파 해석)

  • Kim, Byung Hyun;Han, Kun Yeon;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.429-439
    • /
    • 2009
  • When Catastrophic extreme flood occurs due to dam break, the response time for flood warning is much shorter than for natural floods. Numerical models can be powerful tools to predict behaviors in flood wave propagation and to provide the information about the flooded area, wave front arrival time and water depth and so on. But flood wave propagation due to dam break can be a process of difficult mathematical characterization since the flood wave includes discontinuous flow and dry bed propagation. Nevertheless, a lot of numerical models using finite volume method have been recently developed to simulate flood inundation due to dam break. As Finite volume methods are based on the integral form of the conservation equations, finite volume model can easily capture discontinuous flows and shock wave. In this study the numerical model using Riemann approximate solvers and finite volume method applied to the conservative form for two-dimensional shallow water equation was developed. The MUSCL scheme with surface gradient method for reconstruction of conservation variables in continuity and momentum equations is used in the predictor-corrector procedure and the scheme is second order accurate both in space and time. The developed finite volume model is applied to 2D partial dam break flows and dam break flows with triangular bump and validated by comparing numerical solution with laboratory measurements data and other researcher's data.

Numerical Simulation of Liquid Sloshing in Three- Dimensional Tanks (3차원(次元) 탱크내에서의 액체(液體) 슬로싱의 수치(數値) 해석(解析))

  • J.H. Hwang;I.S. Kim;Y.S. Seol;S.C. Lee;Y.K. Chon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.12-18
    • /
    • 1991
  • Three-dimensional nonlinear sloshing effects due to tank motions are simulated by solving boundary value problem using the panel method based on boundary integral technique. While Shinkai used boundary elements on which source strengths vary linearly between nodes, the source of constant strength is distributed on each triangular panel in the present study. The source strength at each time step is determined by solving the Fredholm integral equation of the second kind obtained from Green's theorem. To avoid cumulative numerical errors as time elapses, Adam-Bashforth-Moulton method is employed. Numerical examples for the case of partially filled spherical tank on board oscillating in harmonic sway mode or pitch mode are solved. The elevation of the free surface is compared with the result by Shinkai and confirmed in good agreement during early time. The input and the output energy are comparatively evaluated to check the overall accuracy of the present numerical scheme. Although some leakage of energy are found as time marches, it is plausible when we take into account nonlinearities of the problem and the number of panels of the model.

  • PDF

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver I : Model Development (Riemann 해법을 이용한 1차원 개수로 수리해석Ⅰ: 모형 개발)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.761-772
    • /
    • 2008
  • The object of this study is to develop the model that solves the numerically difficult problems in hydraulic engineering and to demonstrate the applicability of this model by means of various test examples, such as, verification in the gradually varied unsteady condition, three steady flow problems with the change of bottom slope with exact solution, and frictional bed with analytical solution. The governing equation of this model is the integral form of the Saint-Venant equation satisfying the conservation laws, and finite volume method with the Riemann solver is used. The evaluation of the mass and momentum flux with the HLL Riemann approximate solver is executed. MUSCL-Hancock scheme is used to achieve the second order accuracy in space and time. This study introduce the new and simple technique to discretize the source terms of gravity and hydrostatic pressure force due to longitudinal width variation for the balance of quantity between nonlinear flux and source terms. The results show that the developed model's implementation is accurate, robust and highly stable in various flow conditions with source terms, and this model is reliable for one-dimensional applications in hydraulic engineering.