• Title/Summary/Keyword: 보안형

Search Result 1,328, Processing Time 0.023 seconds

A Comparative Study of Machine Learning Algorithms Using LID-DS DataSet (LID-DS 데이터 세트를 사용한 기계학습 알고리즘 비교 연구)

  • Park, DaeKyeong;Ryu, KyungJoon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • Today's information and communication technology is rapidly developing, the security of IT infrastructure is becoming more important, and at the same time, cyber attacks of various forms are becoming more advanced and sophisticated like intelligent persistent attacks (Advanced Persistent Threat). Early defense or prediction of increasingly sophisticated cyber attacks is extremely important, and in many cases, the analysis of network-based intrusion detection systems (NIDS) related data alone cannot prevent rapidly changing cyber attacks. Therefore, we are currently using data generated by intrusion detection systems to protect against cyber attacks described above through Host-based Intrusion Detection System (HIDS) data analysis. In this paper, we conducted a comparative study on machine learning algorithms using LID-DS (Leipzig Intrusion Detection-Data Set) host-based intrusion detection data including thread information, metadata, and buffer data missing from previously used data sets. The algorithms used were Decision Tree, Naive Bayes, MLP (Multi-Layer Perceptron), Logistic Regression, LSTM (Long Short-Term Memory model), and RNN (Recurrent Neural Network). Accuracy, accuracy, recall, F1-Score indicators and error rates were measured for evaluation. As a result, the LSTM algorithm had the highest accuracy.

Blocking Intelligent Dos Attack with SDN (SDN과 허니팟 기반 동적 파라미터 조절을 통한 지능적 서비스 거부 공격 차단)

  • Yun, Junhyeok;Mun, Sungsik;Kim, Mihui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • With the development of network technology, the application area has also been diversified, and protocols for various purposes have been developed and the amount of traffic has exploded. Therefore, it is difficult for the network administrator to meet the stability and security standards of the network with the existing traditional switching and routing methods. Software Defined Networking (SDN) is a new networking paradigm proposed to solve this problem. SDN enables efficient network management by programming network operations. This has the advantage that network administrators can flexibly respond to various types of attacks. In this paper, we design a threat level management module, an attack detection module, a packet statistics module, and a flow rule generator that collects attack information through the controller and switch, which are components of SDN, and detects attacks based on these attributes of SDN. It proposes a method to block denial of service attacks (DoS) of advanced attackers by programming and applying honeypot. In the proposed system, the attack packet can be quickly delivered to the honeypot according to the modifiable flow rule, and the honeypot that received the attack packets analyzed the intelligent attack pattern based on this. According to the analysis results, the attack detection module and the threat level management module are adjusted to respond to intelligent attacks. The performance and feasibility of the proposed system was shown by actually implementing the proposed system, performing intelligent attacks with various attack patterns and attack levels, and checking the attack detection rate compared to the existing system.

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates (False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석)

  • Jang, Beom-Soo;Lee, Joo-Young;Jung, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.139-149
    • /
    • 2010
  • Internet was designed for network scalability and best-effort service which makes all hosts connected to Internet to be vulnerable against attack. Many papers have been proposed about attack detection algorithms against the attack using IP spoofing and DoS/DDoS attack. Purpose of DoS/DDoS attack is achieved in short period after the attack begins. Therefore, DoS/DDoS attack should be detected as soon as possible. Attack detection algorithms using false alarm rates consist of the false negative rate and the false positive rate. Moreover, they are important metrics to evaluate the attack detections. In this paper, we analyze the performance of the attack detection algorithms using the impact of false negative rate and false positive rate variation to the normal traffic and the attack traffic by simulations. As the result of this, we find that the number of passed attack packets is in the proportion to the false negative rate and the number of passed normal packets is in the inverse proportion to the false positive rate. We also analyze the limits of attack detection due to the relation between the false negative rate and the false positive rate. Finally, we propose a solution to minimize the limits of attack detection algorithms by defining the network state using the ratio between the number of packets classified as attack packets and the number of packets classified as normal packets. We find the performance of attack detection algorithm is improved by passing the packets classified as attacks.

Paleostress Inferred from Calcite Twins in the Pungchon Limestone, Joseon Supergroup (조선누층군 풍촌석회암 방해석 쌍정에서 유추된 고응력장)

  • Kang, Seong-Seung;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.13-26
    • /
    • 2022
  • Calcite twins were analyzed in six oriented samples of the Pungchon limestone, Joseon Supergroup, to reconstruct the paleostress field. The orientations of c-axis of calcite and e twin plane were measured along with the average thickness and numbers of twins, and the widths of calcite grains. Twin strain, mean width, and intensity of twinning, and the relative magnitude and orientations of principal stresses were calculated using Calcite Strain Gauge program. Twin strain, mean width, and intensity of twinning showed ranges of 1.09-15.36%, 0.53-3.72 ㎛ and 21.0-53.1 twim/mm, respectively. Metamorphic temperatures calculated from the twins were 170-200℃, indicating that the twins developed after the Pungchon limestone was uplifted to at least half of the maximum burial depth. Results for five of the samples indicate that the calcite twins formed during two events with principal stress axes of different orientations, while the remaining sample recorded only one event that produced calcite twins. The axis of maximum compressive stress was oriented mainly WNW-ESE to ENE-WSW, and to a lesser degree NW-SE and NE-SW. Comparison of paleostress orientations measured here and in other studies indicates that most twins were produced during the Songrim orogeny. However, the Daebo orogeny and the Bulguksa orogeny also produced calcite twins in the Punchon limestone.

A Case Study on the Interior design characteristics of Integrated CCTV Control Center - Focused at Human Factor Design aspect (CCTV 통합관제센터의 실내공간특성에 대한 사례분석연구 - 인간공학디자인(HFD)의 관점에서)

  • Han, Ji Eun;Kwon, Gyu Hyun
    • Design Convergence Study
    • /
    • v.16 no.3
    • /
    • pp.103-118
    • /
    • 2017
  • It is expected that the integrated control service of the public sector will be increased for the safety of citizens in the future. Therefore, In this study, we analyzed the classification of CCTV control center and the characteristics of interior design. The survey was conducted at eight control centers in Seoul that were constructed since 2007 and analyzed according to the criteria of general matters, services, spatial basic information, spatial structure, and internal structure. The results of the survey are summarized as follows. Based on the results of the study, the Integrated Control Center is a space where the ratio of the physical environment is not high but performs important tasks for the citizens of the city, which are operated 24 hours a day, and security and security. It is characterized by the efficient space allocation for the treatment, the design of the moving line, and the connection according to the urgent work flow. The results of this study are expected to be used as basic data for other integrated control center environment.

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

The Effect of Message Completeness and Leakage Cues on the Credibility of Mobile Promotion Messages (기업의 스마트폰 메시지에 대한 고객 신뢰도에 관한 연구: 메시지 정교화 모델을 중심으로)

  • Hyun Jun Jeon;Jin Seon Choe;Jai-Yeol Son
    • Information Systems Review
    • /
    • v.20 no.1
    • /
    • pp.61-80
    • /
    • 2018
  • Individuals often receive smishing campaigns (mobile phishing messages), which they treat as spam. Thus, firms should understand how their customers distinguish their promotion messages from smishing. However, only a few studies examined this important issue. The present study employs the elaboration likelihood model to develop research hypotheses on the relationship between message cue and message credibility. The message cue in this study is classified as content cue, which is found in the content of promotion messages, and as leakage cue, which is found in peripheral information in the message. Leakage cue includes orthography (inclusion of special characters)and an abbreviated link sent by a faithless sender. We also propose that contextualization has a moderating effect on the relationship between content cue and credibility. We conducted a survey experiment to examine the effect of message cues on message credibility in the context of respondents receiving discount coupons through mobile messages. The result of data analysis based on 166 responses suggests that leakage cue had a negative effect on message credibility. A message with defective content cue has a marginally negative effect on message credibility. In particular, defective content cue in a high-contextual message has a strong negative impact on message credibility. This effect was not observed in low-contextual messages. Moreover, message credibility is significantly low regardless of the degree of contextualization if there is a leakage cue in the message. Our findings suggest that mobile promotion messages should be customized for message receivers and should have no leakage cues.

Proposal for Research Model of High-Function Patrol Robot using Integrated Sensor System (통합 센서 시스템을 이용한 고기능 순찰 로봇의 연구모델 제안)

  • Byeong-Cheon Yoo;Seung-Jung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2024
  • In this dissertation, a we designed and implemented a patrol robot that integrates a thermal imaging camera, speed dome camera, PTZ camera, radar, lidar sensor, and smartphone. This robot has the ability to monitor and respond efficiently even in complex environments, and is especially designed to demonstrate high performance even at night or in low visibility conditions. An orbital movement system was selected for the robot's mobility, and a smartphone-based control system was developed for real-time data processing and decision-making. The combination of various sensors allows the robot to comprehensively perceive the environment and quickly detect hazards. Thermal imaging cameras are used for night surveillance, speed domes and PTZ cameras are used for wide-area monitoring, and radar and LIDAR are used for obstacle detection and avoidance. The smartphone-based control system provides a user-friendly interface. The proposed robot system can be used in various fields such as security, surveillance, and disaster response. Future research should include improving the robot's autonomous patrol algorithm, developing a multi-robot collaboration system, and long-term testing in a real environment. This study is expected to contribute to the development of the field of intelligent surveillance robots.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.