• Title/Summary/Keyword: 보강 섬유

Search Result 1,623, Processing Time 0.024 seconds

Evaluation on Stress-Strain-Strength Behavior of the Textile Encased Soils via Triaxial Compression Tests (삼축압축시험을 통한 섬유로 구속된 흙의 응력-변형률-강도 거동 평가)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.643-653
    • /
    • 2013
  • Recently, there are an increasing number of studies on the method of wrapping the outer wall of granular piles with geosynthetic fibers such as geotextile or geogrid that has a certain level of tensile strength as an alternative method for the ground improvement techniques. In this study, triaxial compression tests are performed on the sand and clay specimen encased with various textiles to evaluate the reinforcing effect with regard to the tensile strength of the textile. Furthermore, triaxial compression tests are performed on the clay specimen inserted by sand only and sand encased with geosynthetics to compare behavioral differences between the conventional sand compaction pile and geosynthetic encased sand pile with regard to the replacement ratio, ${\alpha}_s$ and the tensile strength of the geosynthetics. Based on the experimental results, the strength enhancement due to the textile is affected by the longitudinal tensile strength rather than the transverse one of the applied textile. The effect of the confinement by the textile encasement results in the large increase of the cohesions. The overall behaviors, such as shear strength, pore pressure parameter at failure and stress ratio, of the geosynthetic encased sand pile is quite different from those of the conventional sand compaction pile.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.

보강토 옹벽공사용 지오그리드의 제조 및 물성

  • 전한용;김정효;김홍택;이은수
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.152-155
    • /
    • 1998
  • 지반 보강에 주로 이용되는 지오그리드(geogrids)는 1980년대에 개발되어 다양한 제품으로 발달하여 왔으며, 지오그리드의 높은 인장강도에 의해 기존에 지오텍스타일(geotextiles)이 적용되었던 분야의 대체재로써 그 용도가 확장되고 있다[1,2]. 독립형 보강토 조립식 옹벽의 보강재로써 사용되는 지오그리드는 높은 인장강도, 높은 전단강도와 인발저항을 가져야 한다.(중략)

  • PDF

Elastic Buckling Analysis of Orthotropic Plate with Edge Stiffener (연단보강재가 설치된 직교이방성 평판의 좌굴해석)

  • Yoon, Soon Jong;Lee, Won Bok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.281-290
    • /
    • 1994
  • This paper presents the results of an analytical investigation pertaining to the compression behavior of axially loaded plates made from pultruded fiber reinforced plastic materials. Non-dimensionalized closed-form solutions have been developed for the prediction of the buckling load in the pultruded plates with edge stiffener. These solutions were based upon the classical theory of orthotropic plates and accounted for the e1astic restraints at the juncture of plate and stiffener. The effects of edge stiffener on the flange plate were investigated in order to clarify its usefulness for increasing flange local buckling load of the pultruded structural shapes.

  • PDF

Assessments of Properties of Geosynthetics For Protection/Reinforcement With Seaming Methods (봉합방법에 의한 보호/보강용 Geosynthetics의 특성 평가)

  • 전한용;이웅의
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.333-336
    • /
    • 2002
  • Geosynthetics 제품에는 각각의 구조나 물리적 또는 화학적 특성에 기인한 봉합방법이 적용되고 있으며, 특히, 보호/보강용 geosynthetics 제품의 봉합강도는 봉합방법에 크게 영향을 받는다. 일반적으로 봉합부위는 하중전달 시 응력집중현상이 발생되는 부위이며, 보호/보강용 geosynthetics 제품인 부직포 지오텍스타일의 경우 중량이 커질수록 두꺼워져 기존의 봉합용 재봉기를 이용하기 어렵기 때문에 새로운 봉합기술의 연결재를 이용한 봉합에 문제가 발생하게 된다. (중략)

  • PDF

Manufacturing and Assesment of Composite Type Sewing Threads for Geotextile Seaming (Geotextiles 봉합용 복합 재봉사의 제조 및 평가)

  • 전한용;장경호;김홍관;박용준
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.420-423
    • /
    • 2001
  • 토목합성재료(Geosynthetics) 중 직포매트는 i) 분리, ii) 보강/보호 등의 기능을 가지고 있으며 연약지반 보강, 도로포장, 간척지 지반 공사 및 해안지역 LNG 저장고 공사, 폐기물 매립지의 사면 및 저면 보호재 등 기초 보강재료로 널리 이용되고 있다. 그러나 현재 토목건설공사에 사용되고 있는 직포매트용 봉합사는 타이어 코드 제조용 폴리에스테르 고강력사이며, 봉합할 경우 원통형 관입에 의한 인장신도가 커지게 되어 변형에 의한 파괴가 쉽게발생한다. (중략)

  • PDF

Load Carrying Capacity of Geosynthetic Reinforced Railway Subgrade Under Cyclic Load (토목섬유 보강재로 보강된 철도 노반의 반복하중 하중지지력 연구)

  • Hong, SeungRok;Cho, Yungyu;Choi, JungHyuk;Jeong, Yongjun;Yoo, ChungSik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.109-121
    • /
    • 2013
  • This paper studied the characteristics of bearing capacity of railway reinforced with geosynthetic against repetitive loading of train. The railway that was based on the porous pavement substructure ground and reinforced with geosynthetic was copied. In order to analyze load carrying capacity of geosynthetic, we have had 3cases experiments - in the first case, the ground was non reinforced, second case was reinforced geocell and last case was reinforced geogrid - and all of them were reduced-scale laboratory tests. The results of the analyses indicated that the bearing capacity of the reinforced geogrid increases much more than the reinforced geocell. Residual deformation of the initial cyclic load was larger than the secondary cyclic loads.

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.