DOI QR코드

DOI QR Code

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers

고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능

  • 왕기 (충남대학교 대학원 건축공학과) ;
  • 김동휘 (충남대학교 대학원 건축공학과) ;
  • 윤현도 (충남대학교 건축공학과) ;
  • 장석준 (국토안전관리원, 건축물관리센터) ;
  • 김선우 (충남대학교 건설공학교육과)
  • Received : 2021.10.30
  • Accepted : 2021.12.07
  • Published : 2021.12.31

Abstract

This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

이 논문은 고강도 후크형 강섬유 보강량과 형상비에 따른 콘크리트의 압축 및 휨 성능에 미치는 영향에 대하여 다룬다. 이를 위하여 총 10개 콘크리트 배합이 계획되었다. 설계기준강도 30 MPa인 콘크리트에 형상비(l/d)가 64, 67, 80인 강섬유를 0.25%, 0.50%, 0.75% 혼입하여 강섬유 보강콘크리트가 제조되었다. 형상비 64, 67, 80인 강섬유의 인장강도는 각각 2,000, 2,400, 2,100 MPa이다. 시험 결과로부터 고강도 후크형 강섬유의 혼입량은 콘크리트의 압축 및 휨 성능에 영향을 미치는 것으로 나타났다. 강섬유 혼입량이 증가함에 따라 푸아송비 및 압축인성은 향상되었으나 콘크리트의 압축강도 및 탄성계수에 큰 변화를 보이지 않았다. 강섬유 보강 콘크리트의 균열발생후 휨거동의 특성을 나타내는 잔여 휨강도 및 노치에서 시작된 균열면에서 에너지 소산능력은 강섬유의 혼입률 및 형상비에 따라 크게 좌우되었다. 특히 MC2010에서 정의된 사용 및 극한 상태한계에서의 잔여 휨강도는 강섬유 혼입량과 형상비가 증가함에 따라 증가되었다.

Keywords

Acknowledgement

한국연구재단 지역대학 우수연구자 지원사업에 의한 연구 성과의 일부입니다(NRF-2016R1D1A3B02008179).

References

  1. Rossi, P. (1992), Mechanical behaviour of metal-fibre reinforced concretes. Cement and Concrete Composites, 14(1), 3-16. https://doi.org/10.1016/0958-9465(92)90034-S
  2. Yazici, S., Inan, G., and Tabak, V. (2007), Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025
  3. Jang, S. J., and Yun, H. D. (2018), Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Composite Structures, 185, 203-211. https://doi.org/10.1016/j.compstruct.2017.11.009
  4. Abbass, W., Khan, M. I., and Mourad, S. (2018), Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction and Building Materials, 168, 556-569. https://doi.org/10.1016/j.conbuildmat.2018.02.164
  5. Chen, G., Gao, D., Zhu, H., Yuan, J. S., Xiao, X., and Wang, W. (2021), Effects of novel multiple hooked-end steel fibres on flexural tensile behaviour of notched concrete beams with various strength grades. Structures, 33, 3644-3654. https://doi.org/10.1016/j.istruc.2021.06.016
  6. Kim, D. H., Jang, S. J., Kim, S. W., Park, W. S., and Yun, H. D. (2021), Effect of hooked-end steel fiber volume fraction and aspect Ratio on flexural and compressive properties of concrete. Journal of the Korea institute for structural maintenance and inspection, 25(3), 40-47. https://doi.org/10.11112/JKSMI.2021.25.3.40
  7. Nataraja, M. C., Dhang, N., and Gupta, A. P. (1999), Stress-strain curves for steel-fiber reinforced concrete under compression. Cement and Concrete Composites, 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  8. Tiberti, G., Trabucchi, I., AlHamaydeh, M., Minelli, F., and Plizzari, G. (2017), Crack control in concrete members reinforced by conventional rebars and steel fibers. In IOP Conference Series: Materials Science and Engineering, 246(1), 012008. https://doi.org/10.1088/1757-899X/246/1/012008
  9. FIB, in: fib Model Code for concrete structures 2010, International Federation for structural concrete (fib), Lausanne, 2013, http://doi.org/10.1002/9783433604090.
  10. KS F 2403 (2014), Standard Test Method of Making and Curing Concrete Specimens, Korean Standards Association (in Korean).
  11. European Committee for Standardization (2005), EN 14651 test method for metallic fibered concrete-Measuring the flexural tensile strength (limit of proportionality (LOP), residual), Brussels, Belgium.
  12. Vandewalle, L., Nemegeer, D., Balazs, L., Barr, B., Barros, J., Bartos, P., and Walraven, J. (2003), RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete'-sigma-epsilon-design method-Final Recommendation. Materials and Structures, 36(262), 560-567. https://doi.org/10.1617/14007
  13. RILEM Committee on Fracture Mechanics of Concrete-Test Methods (RILEM 50-FMC). 16 Determination of the fracture energy of mortar and concrete by means of three-point bend test 17 on notched beams.Mater Struct, 18, 285290, (1985).