• Title/Summary/Keyword: 보강토옹벽

Search Result 246, Processing Time 0.026 seconds

A Case Study on Design of Geosynthetic-Reinforced Segmental Retaining Walls (다단식 보강토 옹벽 설계사례에 관한 고찰)

  • Park, Si-Sam;Cho, Sam-Deok;Park, Du-Hee;Chang, Ki-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.168-175
    • /
    • 2008
  • The method of reinforced earth walls has grown remarkably and the frequency of utilization has been increased on a national scale thereafter introduced in the middle 1980s in Korea. Furthermore the construction case of the extensive Geosynthetic-Reinforced Segmental Retaining Walls had been increased. Currently, the design criterion of FHWA and NCMA mainly used in Korea suggest determining the horizontal distance of the upper/lower retaining wall based on the study results of the internal stability and the external stability of Segmental Retaining Walls but in many cases are not suitable for the actual situation in Korea. Therefore, in this study reviewed the design criterion of Geosynthetic-Reinforced Segmental Retaining Walls, performed the internal and external stability in Paju, Gyeonggi-do based on the design criterion of FHWA and NCMA, suggested the modified design criterion of FHWA with analyzing the results, and performed the stability analysis for the internal and external stability and the compound failure. Moreover for the confirmation of the modified FHWA design standard, the suggestion and the analysis of the numerical analysis approaching method using shear strength reduction technique were performed and the design cases utilized the modified FHWA design standard based on the study analysis were introduced.

  • PDF

Behavior of Reinforced Earth Retaining Wall by Shaking Table Test (진동대 모형실험을 통한 보강토 옹벽의 거동 특성)

  • Yoon, Won-Sub;Yoon, Bu-Yeol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.637-647
    • /
    • 2019
  • In this study, we analyzed seismic behavior of reinforced earth retaining wall through the model test in order to characterize the behavior of reinforced earth retaining wall during earthquake. A scale model test was performed based on similitude ratio in accordance with law of similitude due to time and financial constraints on real scale modeling experiments. Seismic resistance characteristics of each seismic waves were analyzed by assessing the variations measured through excitation of the excited acceleration of 0.05g, 0.1g, 0.15g, and 0.2g. The results of this study, it would be important to obtain reasonable and abundant data on ground properties and seismic design in preparation for earthquakes when assessing the safety of block type reinforced earth retaining wall confined to model experiment. Acquisition of those data and systematic analytical techniques are considered likely to have a significant effect on the decrease of structure damage caused by earthquakes in Korea which has recently witnessed frequent occurrence of earthquakes.

A study on development of disaster-risk assessment criteria for steep slope -Based on the cases of NDMS in Ministry of Interior and Safety- (급경사지 재해위험도 평가 기준 개선 방안 연구 -행정안전부 급경사지 관리시스템 사례를 중심으로-)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Jeong, Hyang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.372-381
    • /
    • 2019
  • In this study, the National Disaster Management System (NDMS) was analyzed to evaluate the disaster impact assessment standards for steep slopes. Problems in the assessment methods and systems were discovered, which could be reasons for poor reliability. The disaster-risk evaluation index needs improvement to evaluate various types of retaining walls, such as concrete/reinforced soil walls and reinforcing stone masonry. Additionally, using the same score for overturning, bulging, and efflorescence could be reasons for poor reliability, and different weighting factors are needed. Assessment methods are needed to subdivide the social influence evaluation index while considering environmental conditions of steep slopes, such as railroads and reservoirs. For the evaluation of steep slopes, standards for start and end points of steep slopes should be created for effective management, and disaster impact assessment needs to be performed after redevelopment from an advanced index for protection and reinforcement. These problems were derived from a current evaluation system, so a disaster impact assessment is necessary to supplement the results of this study.

Numerical Analysis of Laterally Displacing Abutment in High Landfill Slope (고성토사면에 시공된 교대의 측방유동에 대한 수치해석적 연구)

  • Park, Min-Cheol;Jang, Seo-Yong;Shin, Baek-Chul;Han, Heui-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.27-39
    • /
    • 2012
  • This research is to propose the reinforcing method and design code for the lateral behaviors of the abutment displacement induced from the rainfall infiltration on high landfill slope. First, to make the proper numerical analysis, in-situ soil (weathered granite soil) was taken, and the variance of strength parameters according to water content variance was examined by undrained direct shear test, furthermore, other soil parameters were calculated from the standard penetration test such as elastic modulus and Poisson's ratio etc,. Those parameters were used to calculate the lateral behavior of abutment by finite element method and the member force of pile in high landfill slope according to rainfall infiltration . From the results, the shoe displacement on abutment was calculated as 8.98cm, which is 3 times bigger than the allowable displacement, 3cm. To reinforce it, several reinforcing methods were selected and analyzed such as reinforced retaining wall, soil surcharge, pile reinforcing (5m enlargement, 3-line arrangement, 5m enlargement and 3-line arrangement). In case of 5m enlarged and 3-line arrangement piles, the lateral behavior of shoe showed lower value(2.26 cm) than allowable displacement.

Evaluation of Reliability of Strain Gauge Measurements for Geosynthetics (토목섬유 보강재에 적용한 스트레인게이지 실측값의 신뢰성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Li, Zhuang;Kim, Uk-Gie
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.87-96
    • /
    • 2015
  • Geosynthetics are widely used in different ways such as reinforcement of structures in road, railway, harbor and dam engineering, drainage, separation and erosion prevention. They are especially applied to reinforced retaining wall and slope or ground reinforcement. Recently, geosynthetics reinforced pile supported (GRPS) embankment was developed to improve stability and construability of embankments in railway engineering. Extension strains are usually measured by strain gauges adhered to geosynthetics to evaluate the stability of geosynthetics. However, the measurements are influenced by manufacturing method and stiffness of geosynthetics and also adherence of strain gauge. In this study, wide-width tensile strength tests were performed on three types of geosynthetics including geogrid, woven geotextile and non-woven geotextile. During the test, strains of geosynthetics were measured by both video extensometer and strain gauges adhered to the geosynthetics and the measured results were compared. Results show that the measured results by strain gauges have high reliability in case of large stiffness geosythetics like geogrid and woven geotextile, whereas they have very low reliability for small stiffness geosythetics like non-woven geotextile.

Evaluation on Bearing Resistance of Transverse Members in Steel Strip Reinforcement using Pullout Tests and Theoretical Equations (인발시험과 이론식을 이용한 강재스트립 보강재에 설치된 지지부재의 지지저항 특성 평가)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Hong, Won-Pyo;Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate pullout resistance of steel strip reinforcement with transverse members. The test results are compared with theoretical equations and then the failure mechanism of transverse members is evaluated. The bearing resistance stress(${\sigma}^{\prime}_b$) of transverse members, which is applied pullout force at 50mm displacement, is closed from punching shear failure to general shear failure. The behavior by increment of a number of transverse members became closer to general shear failure. The behavior of transverse members at maximum pullout force, which is closed to general shear failure, is indicated that it is unrelated to normal stress and a number of transverse members. However, if the allowable displacement of reinforced soil wall is considered, it is impossible to apply in design. The test results are compared with bearing resistance evaluations using Prandtl's plastic theory and cylindrical cavity expansion theory. The analysis results are indicated that the bearing resistance by pullout tests is closed to predicted result by Prandtl's plastic theory, which are located between general shear failure and punching shear failure.

  • PDF

Evaluation of Strain Distribution and Pullout Strength based on Width and Horizontal Spacing of Geosynthetic Strip (띠형 섬유보강재의 폭과 설치간격에 따른 변형률 분포 및 인발강도 특성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • This paper describes large-scale pullout test results of geosynthetic strip, which can be applied in reinforced earth wall with block-type wall facing. The pullout tests are conducted to evaluate the strain distribution, the induced pullout force and the pullout strength. The maximum pullout force is appeared regardless of reinforcement width and normal stress when end displacement is less than 15 mm. The pullout behavior based on horizontal spacing of reinforcement was similar in relationship between pullout force and end displacement. The strain distribution and pullout force distribution of the geosynthetic strip are concentrated in the front part of reinforcement, and it appeared clearly in higher normal stress condition This means that the pullout behavior of geosynthetic strip is affected by the bond between soil and friction resistance reinforcement according normal stress. Therefore, the pullout resistance design is reasonable when pullout behavior of geosynthetic strip should be evaluated by effective length considering tensile characteristic.

Target Reliability Index of Single Gravel Compaction Piles for Limit State Design (한계상태설계를 위한 단일 쇄석다짐말뚝의 목표신뢰도지수)

  • You, Youngkwon;Lim, Heuidae;Park, Joonmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.5-15
    • /
    • 2014
  • Target reliability index in the limit state design indicated the safety margin and it is important to determine the partial factor. To determine the target reliability index which is needed in the limit state design, the six design and construction case histories of gravel compaction piles (GCP) were investigated. The limit state functions were defined by bulging failure for the major failure mode of GCP. The reliability analysis were performed using the first order reliability method (FORM) and the reliability index was calculated for each ultimate bearing capacity formulation. The reliability index of GCP tended to be penportional to the safety factor of allowable stress design and average value was ${\beta}$=2.30. Reliability level that was assessed by reliability analysis and target reliability index for existing structure foundations were compared and analyzed. As a result, The GCP was required a relatively low level of safety compared with deep and shallow foundations and the currd t reliability level were similar to the target reliability in the reinforced earth retaining-wall and soil-nailing. Therefore the target reliability index of GCP suggested as ${\beta}_T$=2.33 by various literatures together with the computed reliability level in this study.

Development and Uncertainty Assessment of Interface Friction Prediction Equation Between Steel Surface and Cohesionless Soils (강재면과 사질토 사이의 경계면 마찰각 예측식 개발 및 불확실성 평가)

  • Lee, Kicheol;Kim, So-Yeun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • Characteristics of interface friction between cohesionless soils and geotechnical structure surfaces play an important role in the analysis of earth load and resistance on the structure. In general, geotechnical structures are mainly composed of either steel or concrete, and their surface roughnesses with respect to soil particle sizes influence the interface characteristics between soils and the structures. Accurate assessment of the interface friction characteristics between soils and structures is important to ensure the safety of geotechnical structures, such as mechanically stabilized earth walls reinforced with inextensible reinforcements, piles embedded into soils, retaining wall backfilled with soils. In this study, based on the database of high quality interface friction tests between frictional soils and solid surfaces from literature, equation representing peak interface friction angle is proposed. The influential factors of the peak interface friction angle are relative roughness between soil and solid surface, relative density of frictional soil, and residual (constant volume) interface friction angle. Futhermore, for the developed equation of the interface friction angle, its uncertainty was assessed statistically based on Goodness-of-fit test results.

An Experimental Study on Local Stability of Eco-block (생태축조블록의 국부적 안정성에 관한 실험적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2866-2871
    • /
    • 2011
  • In this study, computation method of tensile load which develops in tie-bar of reinforced earth, connection strength between tie-bar and eco-block and shear strength of the interface between two eco-blocks were verified by experiments. According to the test results of connection strength test, peak tensile load of D13 deformed bar were close to allowable tensile load of it for situation of infill with soil. Connection strengths of D10 and D13 deformed bars were greater than the allowable tensile load of those respectively for situation of infill with concrete. According to the test results of shear strength of the interface between two eco-blocks, shear resistance parameters, ${\alpha}_u$ and ��${\lambda}_u$ were evaluated as 1.7kN/m and 2$27.6^{\circ}$ respectively.