• Title/Summary/Keyword: 병리 생태

Search Result 57, Processing Time 0.024 seconds

Effects of various concentrations of skullcap extract in the diets on disease resistance of olive flounder, Paralichthys olivaceus (생약재 황금 뿌리 열수추출물의 넙치 투여시 질병저항성에 미치는 영향)

  • Jee, Bo-Young;Seo, Jung-Soo;Jeon, Eun-Ji;Lee, Eun-Hye;Choi, Hee-Jung;Kim, Jin-Do;Jung, Sung-Hee;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.25 no.1
    • /
    • pp.21-30
    • /
    • 2012
  • Effects of various concentration of skullcap Scutellaria baicalensis in the diets on a nonspecific immunity and a disease resistance of olive flounder were investigated. After feeding trial, weight gain of fish fed 0.05% skullcap immersed group was higher than that of fish fed 0, 0.1 and 1% skullcap diet but no significant differences were observed among the experimental groups. Furthermore, no significant differences in hematological indices of olive flounder were found among the experimental groups. Lysozyme activity in the serum and kidney of the administrated group(0.05% skullcap immersed group) was significantly higher than the control group. In addition, the chemiluminescent(CL) responses of head kidney leucocytes from the 0.05% skullcap immersed group was significantly higher(P<0.05) than the control group. In the histological results, the 1% skullcap immersed group appeared to have the detrimental effects for fish health. In a challenge experiment with Edwardsiella tarda(GY-01) and Streptococcus iniae(FT5228), relative percent survival (RPS) in the 0.05% skullcap immersed group was higher than the control group injected with E. tarda(GY-01) at $4^{th}$ and $8^{th}$ weeks. The results suggest that the skullcap extract (0.05%) would be effective to enhance the nonspecific immunity and protective ability of olive flounder against fish pathogen such as E. tarda.

Control Efficacy of Nano-silver Liquid on Oak Wilt Caused by Raffaelea sp. in the Field (은 나노 용액을 활용한 참나무 시들음병 방제 연구)

  • Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Yun-Seok;Sim, Sang-Jun;Kim, Ha-Sun;Chang, Seok-Joon;Kim, Jong-Kuk;Kim, Kyoung-Su;Lee, Youn-Su
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.136-141
    • /
    • 2011
  • In other previous in vitro tests, the hyphal growth of Raffaelea quercivorus was inhibited by the treatments of various concentration of nano-silver. In this field tests, treatment of different concentrations of nano-silver to oak trees in Cheolwon and Hongcheon sites showed the inhibition effects against wilt disease caused by Raffaelea quercivorus. However, nano-silver-treated oak tree in Chuncheon site showed mild wilt symptoms with no phytotoxicity. Scanning electron microscope (SEM) observation confirmed that the spore and hypha of Raffaelea sp. inside the vessels were damaged by nano-silver. This result indicates the application of nanosilver is effective for control of Raffaelea quercivorus in the field.

Research Review on Turfgrass Disease in Korea (한국의 잔디병해 연구사)

  • Shim, Gyu Yul;Lee, Jung Han
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • Turfgrass provides various beneficial effects to our societies such as recreation, aesthetic components, and other public service. Diseases in turfgrass is the major issue, which cause quality problems in golf courses, playgrounds, parks and cultivation areas, and tremendous cost is required to prevent the diseases. Research activity and investigation for turfgrass disease remain to be further attributed when compared to other crops in Korea. In this study, we present previously reported turfgrass diseases researches, especially caused by fungal pathogens, and review the history of turfgrass research activity in Korea to contribute future turfgrass research direction. Research papers were searched and analyzed using Korea Educational and Research Information Service (www.riss.kr). More than eighty papers presented turfgrass diseases and among the papers, 50% were published in Korean Journal of Turfgrass. Half of the papers reported turfgrass diseases control. Research articles about large patch disease were the majority (36%), followed dollar spot (18%), Pythium blight (10%) and Typhular blight (8%). Number of the first disease reports in Korea were total fifteen. Total 542 fungicides have been registered in Korea to prevent turfgrass diseases and most of the fungicides were for brown patch, rust, yellow patch, dollar spot, snow mold, summer patch, anthracnose, Pythium blight, powdery mildew and algae. And we will also need to conduct ecological studies on turf diseases and to develop control methods with improved efficacy and environmentally-friend sound. Researches on epidemiology of turfgrass diseases which deals with the incidence, distribution, and interactions with other factors will be also greatly favored for precise control prescription, timing of control and use of less pesticides.

Ecological Characteristics of Bacteriophages Infecting Xanthomonas oryzae pv. oryzae and Their Use as Biocontrol Agents (벼 흰잎마름병균 파지의 생태학적 특성 및 이를 이용한 생물방제)

  • Yu, Sang-Mi;Noh, Tae-Hwan;Kim, Dong-Min;Jeon, Tae-Woog;Lee, Young-Kee;Lee, Se-Won;You, Oh-Jong;Kim, Byung-Seok;Lee, Yong-Hoon
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.90-94
    • /
    • 2011
  • Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice growing regions of the world. There are no effective ways of protecting rice from the disease. In this study, the bacteriophage (phage) mixtures infecting Xoo were investigated as biological control agent on BLB. The effects of pH, heat and ultraviolet on the stability of phages were investigated to check and increase the possibility of practical use in the field. Phages were rather stable between pH 5 and pH 10. The infectivity dropped sharply when the phages were incubated at $50^{\circ}C$ and more than 90% of the phages were inactivated after two minutes of ultraviolet treatment. The phages were stable for 7 days at the rice plant leaves, and the phages survived 10 times more than other treatments when mixed with skim milk. Although the skim milk increased the stability of the phages, the control efficacy was not effective. However, the phage mixtures reduced the occurrence of BLB when they were treated with Tecloftalam WP or Acibenzolar-S-methyl simultaneously. The results indicated that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.

Characteristics of Watermelon Mosaic Virus Transmission Occurring in Korean Ginseng (인삼에서 발생하는 수박모자이크바이러스의 감염 특성)

  • Choi, Seung-Kook;Cho, In-Sook;Chung, Bong-Nam;Kim, Mi-Kyeong;Jung, Won-Kwon;Choi, Gug-Seoun
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.206-210
    • /
    • 2014
  • Korean ginseng (Panax ginseng) is the most popular herb for medical purpose in Korea. Recently, viral diseases from Korean ginseng showing various degrees of severe mottling, variegation and mosaic symptoms have caused quantity losses of Korean ginseng in a large number of farms. Watermelon mosaic virus (named WMV-gin) was identified as a causal agent for the disease of Korean ginseng. Interestingly, WMV-gin failed to infect both Korean ginseng plant and susceptible host species including cucurbitaceous plants by mechanical inoculation. However, WMV-gin could successfully infect Korean ginseng by transmission of two aphid species (Myzus persicae and Aphis gossypii). It is likely that transmission of WMV-gin was done by both the aphid species during feeding behavior of the two aphid species on Korean ginseng, though the aphids dislike feeding in Korea ginseng. Similarly, a strain of WMV (WMV-wm) isolated from watermelon was transmitted successfully to Korean ginseng plant by the two aphid species, but not by mechanical inoculations. Transmission assays using M. persicae and A. gossypii clearly showed both WMV-gin and WMV-wm were not transmitted from infected Korean ginseng plant to cucurbit species that are good host species for WMV. These results suggest WMV disease occurring in Korean ginseng plant can be controlled by ecological approaches.

Occurrence of Gray Mold Caused by Botrytis cinerea on Okra in Korea (Botrytis cinerea에 의한 오크라 잿빛곰팡이병)

  • Choi, JangNam;Choi, InYoung;Lee, KuiJae;Lee, JungNo;Cho, SeongWan;Shin, HyeonDong;Galea, Victor
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.302-307
    • /
    • 2018
  • From 2014 to 2016, approximately 5% of okra fruit were observed displaying gray mold symptoms at the research field of Jeollabuk-do Agricultural Research and Extension Services, Korea. The symptoms observed were water-soaked, brown or gray spots, and abundant mycelial with conidia appearing on the infected fruit. Initial infection commenced from the base of fruit and gradually moved to the pod, where it finally resulted in collapse. Colonies on potato dextrose agar were gray to grayish brown, felted and cottony expanding 65-80 mm after one week. The fungus formed several black sclerotia ranging $1.0-3.5{\times}0.5-3.0mm$ on the Petri dish after two weeks. The conidia were one-celled, ellipsoidal or ovoid, colorless or pale brown, and $6.2-15.4{\times}5.0-10.4{\mu}m$. Conidiophores arose solitary or in groups, straight or flexuous, septate, with an inflated basal cell brown to light brown, and measured $85-450{\times}10.0-40.0{\mu}m$. On the basis of the morphological characteristics and phylogenetic analyses of internal transcribed spacer rDNA, the fungus was identified as Botrytis cinerea Pers. Pathogenicity of a representative isolate was proved by artificial inoculation, fulfilling Koch's postulates. To our knowledge, this is the first report on the occurrence of B. cinerea on okra in Korea.

Nematode-Trapping Fungi Showed Different Predacity among Nematode Species (선충 종류별 4종 포식성곰팡이의 포식력 차이)

  • Kang, Heonil;Choi, Insoo;Park, Namsook;Bae, Changhwan;Kim, Donggeun
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.149-155
    • /
    • 2019
  • Nematode-trapping fungi develop trap and consume nematodes are an important part of the subsoil ecosystem and they share a special predator-prey relationship. Four nematode-trapping species, there with adhesive network, Arthrobotrys oligospora, A. sinensis, A. thaumasia and one with constricting ring, Drechslerella brochopaga were collected from soils in Korea and tested their predacity against 12 different nematode species. They were three feeding groups, plant-parasitic (Meloidogyne incognita and Pratylenchus penetrans), fungivorous (Aphelenchus avenae), bacteriovorous (Betlerius sp. and Diplogasteritus sp. in diplogasterid, Panagrolaimus labiatus, P. multidentatus in panagrolaimid, Mesorhabditis irregularis, Pelodera strongyloides and Rhabditis sp., in rhabditid, and Acrobeloides sp. in cephalobid). Results showed that nematode-trapping fungi successfully captured most of nematodes in Petri dish in the group of plant-parasitic nematodes and rhabditids, moderately and variably in other nematodes in 15 days. But it didn't captured A. avenae and Acrobeloides sp. both belongs to c-p group 2. Numbers of Acrobeloides sp. and A. avenae even increased during the test period. The results of this study indicated that nematode-trapping fungi may have specificity among nematode species.

Next-generation Probiotics, Parabiotics, and Postbiotics (Next-generation probiotics, parabiotics 및 postbiotics)

  • Cho, Kwang Keun;Lee, Seung Ho;Choi, In Soon;Lee, Sang Won
    • Journal of Life Science
    • /
    • v.31 no.6
    • /
    • pp.595-602
    • /
    • 2021
  • Human intestinal microbiota play an important role in the regulation of the host's metabolism. There is a close pathological and physiological interaction between dysbiosis of the intestinal microflora and obesity and metabolic syndrome. Akkermansia muciniphila, which was recently isolated from human feces, accounts for about 1-4% of the intestinal microbiota population. The use of A. muciniphila- derived external membrane protein Amuc_1100 and extracellular vesicles (EVs) could be a new strategy for the treatment of obesity. A. muciniphila is considered a next-generation probiotic (NGP) for the treatment of metabolic disorders, such as obesity. Faecalibacterium prausnitzii accounts for about 5% of the intestinal microbiota population in healthy adults and is an indicator of gut health. F. prausnitzii is a butyrate-producing bacterium, with anti-inflammatory effects, and is considered an NGP for the treatment of immune diseases and diabetes. Postbiotics are complex mixtures of metabolites contained in the cell supernatant secreted by probiotics. Parabiotics are microbial cells in which probiotics are inactivated. Paraprobiotics and postbiotics have many advantages over probiotics, such as clear chemical structures, safe dose parameters, and a long shelf life. Thus, they have the potential to replace probiotics. The most natural strategy to restore the imbalance of the intestinal ecosystem normally is to use NGPs among commensal bacteria in the gut. Therefore, it is necessary to develop new foods or drugs such as parabiotics and postbiotics using NGPs.

Microplastics in the Marine Environment and Their Impacts on Human Health (해양 환경의 미세 플라스틱과 인간의 건강에 미치는 영향)

  • Bak, Jia;Kang, Hyun Bon;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.442-451
    • /
    • 2021
  • Microplastics are fragments of any type of plastic with a size less than 5 mm. Ocean pollution by microplastics is now a worldwide concern in relation to marine ecosystems and human health. The widespread contamination by microplastics means that they can be ingested by and accumulated in diverse species of wildlife, such as fish, mussels, oysters, clams, and scallops. Once ingested, the microplastics can be observed in the intestines, liver, and kidney, and even in the brain. Seafood is one of the major sources of protein intake in humans; therefore, seafood consumption could be pathway for human microplastics exposure. Accumulating evidence indicates that repeated oral exposure to microplastics induces pathologic and functional changes in the reproductive, cardiac, gastrointestinal, endocrine, and even nervous systems of rodents. Maternal exposure to microplastics during gestation and lactation alters metabolic homeostasis in the offspring. Given that seafood provides more than 20% of the total protein intake by over 310 million people worldwide, a reasonable assumption is that microplastics could be substantially accumulated in the human body and impair physiological function. In this review, we have summarized the current status of microplastics contamination in the ocean, their accumulation and toxicities in marine animals and rodents, their exposure to humans, and their potential impacts on human health.

Aromatic Agriculture: Volatile Compound-Based Plant Disease Diagnosis and Crop Protection (향기농업: 휘발성 물질을 이용한 식물병 진단과 방제)

  • Riu, Myoungjoo;Son, Jin-Soo;Oh, Sang-Keun;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2022
  • Volatiles exist ubiquitously in nature. Volatile compounds produced by plants and microorganisms confer inter-kingdom and intra-kingdom communications. Autoinducer signaling molecules from contact-based chemical communication, such as bacterial quorum sensing, are relayed through short distances. By contrast, biogenic volatiles derived from plant-microbe interactions generate long-distance (>20 cm) alarm signals for sensing harmful microorganisms. In this review, we discuss prior work on volatile compound-mediated diagnosis of plant diseases, and the use of volatile packaging and dispensing approaches for the biological control of fungi, bacteria, and viruses. In this regard, recent developments on technologies to analyze and detect microbial volatile compounds are introduced. Furthermore, we survey the chemical encapsulation, slow-release, and bio-nano techniques for volatile formulation and delivery that are expected to overcome limitations in the application of biogenic volatiles to modern agriculture. Collectively, technological advances in volatile compound detection, packaging, and delivery provide great potential for the implementation of ecologically-sound plant disease management strategies. We hope that this review will help farmers and young scientists understand the nature of microbial volatile compounds, and shift paradigms on disease diagnosis and management to aromatic (volatile-based) agriculture.