Browse > Article
http://dx.doi.org/10.5423/RPD.2022.28.1.1

Aromatic Agriculture: Volatile Compound-Based Plant Disease Diagnosis and Crop Protection  

Riu, Myoungjoo (Molecular Phytobacteriology Laboratory, KRIBB)
Son, Jin-Soo (Molecular Phytobacteriology Laboratory, KRIBB)
Oh, Sang-Keun (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, KRIBB)
Publication Information
Research in Plant Disease / v.28, no.1, 2022 , pp. 1-18 More about this Journal
Abstract
Volatiles exist ubiquitously in nature. Volatile compounds produced by plants and microorganisms confer inter-kingdom and intra-kingdom communications. Autoinducer signaling molecules from contact-based chemical communication, such as bacterial quorum sensing, are relayed through short distances. By contrast, biogenic volatiles derived from plant-microbe interactions generate long-distance (>20 cm) alarm signals for sensing harmful microorganisms. In this review, we discuss prior work on volatile compound-mediated diagnosis of plant diseases, and the use of volatile packaging and dispensing approaches for the biological control of fungi, bacteria, and viruses. In this regard, recent developments on technologies to analyze and detect microbial volatile compounds are introduced. Furthermore, we survey the chemical encapsulation, slow-release, and bio-nano techniques for volatile formulation and delivery that are expected to overcome limitations in the application of biogenic volatiles to modern agriculture. Collectively, technological advances in volatile compound detection, packaging, and delivery provide great potential for the implementation of ecologically-sound plant disease management strategies. We hope that this review will help farmers and young scientists understand the nature of microbial volatile compounds, and shift paradigms on disease diagnosis and management to aromatic (volatile-based) agriculture.
Keywords
Biological control; Determinant; Induced resistance; PGPR; Volatile compounds;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kai, M. and Piechulla, B. 2009. Plant growth promotion due to rhizobacterial volatiles: an effect of CO2? FEBS Lett. 583: 3473-3477.   DOI
2 Kim, K.-S., Lee, S. and Ryu, C.-M. 2013. Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance. Nat. Commun. 4: 1809.   DOI
3 Kishimoto, K., Matsui, K., Ozawa, R. and Takabayashi, J. 2005. Volatile C6-aldehydes and Allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol. 46: 1093-1102.   DOI
4 Kishimoto, K., Matsui, K., Ozawa, R. and Takabayashi, J. 2006. Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci. 170: 715-723.   DOI
5 Kishimoto, K., Matsui, K., Ozawa, R. and Takabayashi, J. 2007. Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J. Gen. Plant Pathol. 73: 35-37.   DOI
6 Lammers, A., Lalk, M. and Garbeva, P. 2022. Air ambulance: antimicrobial power of bacterial volatiles. Antibiotics (Basel) 11: 109.   DOI
7 Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T. et al. 2016. Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front. Microbiol. 7: 1838.
8 Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H. and Ryu, C.-M. 2012. Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE 7: e48744.   DOI
9 Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M. and Linko, P. 2003. Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J. Food Sci. 68: 2256-2262.   DOI
10 Bui, H. X., Hadi, B. A. R., Oliva, R. and Schroeder, N. E. 2020. Beneficial bacterial volatile compounds for the control of root-knot nematode and bacterial leaf blight on rice. Crop Prot. 135: 104792.   DOI
11 Elmassry, M. M. and Piechulla, B. 2020. Volatilomes of bacterial infections in humans. Front. Neurosci. 14: 257.   DOI
12 Vandendriessche, T., Keulemans, J., Geeraerd, A., Nicolai, B. M. and Hertog, M. L. A. T. M. 2012. Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol. 32: 406-414.   DOI
13 Avalos, M., van Wezel, G. P., Raaijmakers, J. M. and Garbeva, P. 2018. Healthy scents: microbial volatiles as new frontier in antibiotic research? Curr. Opin. Microbiol. 45: 84-91.   DOI
14 Aksenov, A. A., Pasamontes, A., Peirano, D. J., Zhao, W., Dandekar, A. M., Fiehn, O. et al. 2014. Detection of Huanglongbing disease using differential mobility spectrometry. Anal. Chem. 86: 2481-2488.   DOI
15 Tahir, H. A. S., Gu, Q., Wu, H., Niu, Y., Huo, R. and Gao, X. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7: 40481.   DOI
16 Rosenberg, M., Kopelman, I. J. and Talmon, Y. 1990. Factors affecting retention in spray-drying microencapsulation of volatile materials. J. Agric. Food Chem. 38: 1288-1294.   DOI
17 Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Pare, P. W. et al. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 3: 130-138.   DOI
18 Spinelli, F., Cellini, A., Vanneste, J. L., Rodriguez-Estrada, M. T., Costa, G., Savioli, S. et al. 2012. Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees 26: 141-152.   DOI
19 Contreras, J. A., Murray, J. A., Tolley, S. E., Oliphant, J. L., Tolley, H. D., Lammert, S. A. et al. 2008. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. Mass Spectr. 19: 1425-1434.   DOI
20 Cortes-Barco, A. M., Goodwin, P. H. and Hsiang, T. 2010a. Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653.   DOI
21 Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189.   DOI
22 Xie, S., Zang, H., Wu, H., Uddin Rajer, F. and Gao, X. 2018. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol. 19: 49-58.   DOI
23 Velazquez-Becerra, C., Macias-Rodriguez, L. I., Lopez-Bucio, J., Flores-Cortez, I., Santoyo, G., Hernandez-Soberano, C. et al. 2013. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma 250: 1251-1262.   DOI
24 Weise, T., Kai, M., Gummesson, A., Troeger, A., von Reuss, S., Piepenborn, S. et al. 2012. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10. Beilstein J. Org. Chem. 8: 579-596.   DOI
25 Xiao, Z., Liu, W., Zhu, G., Zhou, R. and Niu, Y. 2014. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J. Sci. Food Agric. 94: 1482-1494.   DOI
26 Beck, J. J., Porter, N., Cook, D., Gee, W. S., Griffith, C. M., Rands, A. D. et al. 2015. In-field volatile analysis employing a hand-held portable GC-MS: emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem. Anal. 26: 395-403.   DOI
27 Attaran, E., Rostas, M. and Zeier, J. 2008. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol. Plant-Microbe Interact. 21: 1482-1497.   DOI
28 Audrain, B., Farag, M. A., Ryu, C.-M. and Ghigo, J.-M. 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 39: 222-233.   DOI
29 Banchio, E., Xie, X., Zhang, H. and Pare, P. W. 2009. Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J. Agric. Food Chem. 57: 653-657.   DOI
30 Cellini, A., Buriani, G., Rocchi, L., Rondelli, E., Savioli, S., Rodriguez Estrada, M. T. et al. 2018. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. Mol. Plant Pathol. 19: 158-168.   DOI
31 Cellini, A., Spinelli, F., Donati, I., Ryu, C.-M. and Kloepper, J. W. 2021. Bacterial volatile compound-based tools for crop management and quality. Trends Plant Sci. 26: 968-983.   DOI
32 Schulz, S. and Dickschat, J. S. 2007. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24: 814-842.   DOI
33 Sharifi, R. and Ryu, C.-M. 2016. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front. Microbiol. 7: 196.   DOI
34 Fatima, S. and Anjum, T. 2017. Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front. Plant Sci. 8: 848.   DOI
35 D'Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J. et al. 2014. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 37: 813-826.   DOI
36 Dandurishvili, N., Toklikishvili, N., Ovadis, M., Eliashvili, P., Giorgobiani, N., Keshelava, R. et al. 2011. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J. Appl. Microbiol. 110: 341-352.   DOI
37 Farag, M. A., Song, G. C., Park, Y.-S., Audrain, B., Lee, S., Ghigo, J.-M. et al. 2017. Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals. Nat. Protoc. 12: 1359-1377.   DOI
38 Feron, G., Mauvais, G., Martin, F., Semon, E. and Blin-Perrin, C. 2007. Microbial production of 4-hydroxybenzylidene acetone, the direct precursor of raspberry ketone. Lett. Appl. Microbiol. 45: 29-35.   DOI
39 Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q. and Shen, Q. 2016a. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol. Res. 192: 103-113.   DOI
40 Frost, C. J., Appel, H. M., Carlson, J. E., De Moraes, C. M., Mescher, M. C. and Schultz, J. C. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol. Lett. 10: 490-498.   DOI
41 Garbeva, P. and Weisskopf, L. 2020. Airborne medicine: bacterial volatiles and their influence on plant health. New Phytol. 226: 32-43.   DOI
42 Blasioli, S., Biondi, E., Samudrala, D., Spinelli, F., Cellini, A., Bertaccini, A. et al. 2014. Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples. J. Agric. Food Chem. 62: 337-347.   DOI
43 Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W. et al. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 100: 4927-4932.   DOI
44 Santoro, M. V., Zygadlo, J., Giordano, W. and Banchio, E. 2011. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol. Biochem. 49: 1177-1182.   DOI
45 Santos, F. J. and Galceran, M. T. 2003. Modern developments in gas chromatography-mass spectrometry-based environmental analysis. J. Chromatogr. A 1000: 125-151.   DOI
46 Song, G. C., Riu, M. and Ryu, C.-M. 2019. Beyond the two compartments Petri-dish: optimising growth promotion and induced resistance in cucumber exposed to gaseous bacterial volatiles in a miniature greenhouse system. Plant Methods 15: 9.   DOI
47 Yu, Y. T., Liu, L. N., Zhu, X. L. and Kong, X. Z. 2012. Microencapsulation of dodecyl acetate by complex coacervation of whey protein with acacia gum and its release behavior. Chin. Chem. Lett. 23: 847-850.   DOI
48 Boland, W. 1995. The chemistry of gamete attraction: chemical structures, biosynthesis, and (a)biotic degradation of algal pheromones. Proc. Natl. Acad. Sci. U. S. A. 92: 37-43.   DOI
49 Blake, R. S., Monks, P. S. and Ellis, A. M. 2009. Proton-transfer reaction mass spectrometry. Chem. Rev. 109: 861-896.   DOI
50 Lemfack, M. C., Gohlke, B.-O., Toguem, S. M. T., Preissner, S., Piechulla, B. and Preissner, R. 2017. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res. 46: D1261-D1265.   DOI
51 Lindinger, W. and Jordan, A. 1998. Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 27: 347-375.   DOI
52 Zhang, C., Zhang, M., Yan, Z., Wang, F., Yuan, X., Zhao, S. et al. 2021. CO2 is a key constituent of the plant growth-promoting volatiles generated by bacteria in a sealed system. Plant Cell Rep. 40: 59-68.   DOI
53 Weisskopf, L., Schulz, S. and Garbeva, P. 2021. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 19: 391-404.   DOI
54 Yang, M., Lu, L., Pang, J., Hu, Y., Guo, Q., Li, Z. et al. 2019. Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production. J. Microbiol. 57: 396-404.   DOI
55 Zada, A., Falach, L. and Byers, J. A. 2009. Development of sol-gel formulations for slow release of pheromones. Chemoecology 19: 37-45.   DOI
56 Zhang, Y., Li, T., Liu, Y., Li, X., Zhang, C., Feng, Z. et al. 2019. Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. J. Agric. Food Chem. 67: 3702-3710.   DOI
57 Ghosh, S. K. 2006. Functional coatings and microencapsulation: a general perspective. In: Functional Coatings, ed. by S. K. Ghosh, pp. 1-28. Wiley-VCH Verlag, Weinheim, Germany.
58 Gong, A.-D., Wu, N.-N., Kong, X.-W., Zhang, Y.-M., Hu, M.-J., Gong, S.-J. et al. 2019. Inhibitory effect of volatiles emitted from Alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front. Microbiol. 10: 1419.   DOI
59 Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H. et al. 2006. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19: 924-930.   DOI
60 Hao, H.-T., Zhao, X., Shang, Q.-H., Wang, Y., Guo, Z.-H., Zhang, Y.-B. et al. 2016. Comparative digital gene expression analysis of the Arabidopsis response to volatiles emitted by Bacillus amyloliquefaciens. PLoS ONE 11: e0158621.   DOI
61 Huang, J., Cardoza, Y. J., Schmelz, E. A., Raina, R., Engelberth, J. and Tumlinson, J. H. 2003. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217: 767-775.   DOI
62 Koiv, V., Andresen, L., Broberg, M., Frolova, J., Somervuo, P., Auvinen, P. et al. 2013. Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One 8: e54248.   DOI
63 Massawe, V. C., Hanif, A., Farzand, A., Mburu, D. K., Ochola, S. O., Wu, L. et al. 2018. Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology 108: 1373-1385.   DOI
64 Sharifi, R., Lee, S.-M. and Ryu, C.-M. 2018. Microbe-induced plant volatiles. New Phytol. 220: 684-691.   DOI
65 Scala, A., Allmann, S., Mirabella, R., Haring, M. A. and Schuurink, R. C. 2013. Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens. Int. J. Mol. Sci. 14: 17781-17811.   DOI
66 Schulz-Bohm, K., Gerards, S., Hundscheid, M., Melenhorst, J., de Boer, W. and Garbeva, P. 2018. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 12: 1252-1262.   DOI
67 Schulz-Bohm, K., Martin-Sanchez, L. and Garbeva, P. 2017. Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front. Microbiol. 8: 2484.   DOI
68 Sholberg, P. and Randall, P. 2005. Hexanal vapor for postharvest decay control and aroma production in stored pome fruit. Phytopathology 95: S96.
69 Sholberg, P. and Randall, P. 2007. Fumigation of stored pome fruit with hexanal reduces blue and gray mold decay. HortScience 42: 611-616.   DOI
70 Song, G. C. and Ryu, C.-M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14: 9803-9819.   DOI
71 Li, Z., Paul, R., Ba Tis, T., Saville, A. C., Hansel, J. C., Yu, T. et al. 2019. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 5: 856-866.   DOI
72 Amavizca, E., Bashan, Y., Ryu, C.-M., Farag, M. A., Bebout, B. M. and de-Bashan, L. E. 2017. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growthpromoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci. Rep. 7: 41310.   DOI
73 Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M. and Hyakumachi, M. 2014. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9: e86882.   DOI
74 Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. and Fernie, A. R. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1: 387-396.   DOI
75 Lyu, A., Yang, L., Wu, M., Zhang, J. and Li, G. 2020. High efficacy of the volatile organic compounds of Streptomyces yanglinensis 3-10 in suppression of Aspergillus contamination on peanut kernels. Front. Microbiol. 11: 142.   DOI
76 Massberg, D. and Hatt, H. 2018. Human olfactory receptors: novel cellular functions outside of the nose. Physiol. Rev. 98: 1739-1763.   DOI
77 Ojaghian, M. R., Wang, L., Xie, G.-L. and Zhang, J.-Z. 2019. Effect of volatiles produced by Trichoderma spp. on expression of glutathione transferase genes in Sclerotinia sclerotiorum. Biol. Control 136: 103999.   DOI
78 Peng, G., Zhao, X., Li, Y., Wang, R., Huang, Y. and Qi, G. 2019. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol. Res. 227: 126297.   DOI
79 Poveda, J. 2021. Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl. Soil Ecol. 168: 104118.   DOI
80 Havenga, W. J. and Rohwer, E. R. 2000. The use of SPME and GC-MS for the chemical characterisation and assessment of PAH pollution in aqueous environmental samples. Int. J. Environ. Anal. Chem. 78: 205-221.   DOI
81 Heil, M. 2014. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol. 204: 297-306.   DOI
82 Heuskin, S., Lorge, S., Lognay, G., Wathelet, J.-P., Bera, F., Leroy, P. et al. 2012. A semiochemical slow-release formulation in a biological control approach to attract hoverflies. J. Environ. Ecol. 3: 72-85.
83 Huang, C.-J., Tsay, J.-F., Chang, S.-Y., Yang, H.-P., Wu, W.-S. and Chen, C.-Y. 2012. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag. Sci. 68: 1306-1310.   DOI
84 Deng, C., Zhang, X. and Li, N. 2004. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 808: 269-277.   DOI
85 Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A. et al. 2016. Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 15: 143-182.   DOI
86 Zhao, P., Li, P., Wu, S., Zhou, M., Zhi, R. and Gao, H. 2019. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. AMB Express 9: 119.   DOI
87 Zhou, J.-Y., Li, X., Zheng, J.-Y. and Dai, C.-C. 2016. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. Plant Physiol. Biochem. 101: 132-140.   DOI
88 Miekisch, W., Schubert, J. K. and Noeldge-Schomburg, G. F. E. 2004. Diagnostic potential of breath analysis: focus on volatile organic compounds. Clin. Chim. Acta 347: 25-39.   DOI
89 Sharifi, R. and Ryu, C.-M. 2018. Biogenic volatile compounds for plant disease diagnosis and health improvement. Plant Pathol. J. 34: 459-469.   DOI
90 Kong, H. G., Shin, T. S., Kim, T. H. and Ryu, C.-M. 2018. Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front. Plant Sci. 9: 90.   DOI
91 Broberg, M., Lee, G. W., Nykyri, J., Lee, Y. H., Pirhonen, M. and Palva, E. T. 2014. The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl. Environ. Microbiol. 80: 1972-1984.   DOI
92 Buckley, A. M. and Greenblatt, M. 1994. The sol-gel preparation of silica gels. J. Chem. Educ. 71: 599.   DOI
93 Castelyn, H. D., Appelgryn, J. J., Mafa, M. S., Pretorius, Z. A. and Visser, B. 2014. Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas. Plant Pathol. 44: 245-254.   DOI
94 Cellini, A., Biondi, E., Buriani, G., Farneti, B., Rodriguez-Estrada, M. T., Braschi, I. et al. 2016. Characterization of volatile organic compounds emitted by kiwifruit plants infected with Pseudomonas syringae pv. actinidiae and their effects on host defences. Trees 30: 795-806.   DOI
95 Chan, A. S., Valle, J. D., Lao, K., Malapit, C., Chua, M. and So, R. C. 2009. Evaluation of silica-gel microcapsule for the controlled release of insect repellent, N,N-diethyl-2-methoxybenzaimide, on cotton. Philipp. J. Sci. 138: 13-21.
96 Chinchilla, D., Bruisson, S., Meyer, S., Zuhlke, D., Hirschfeld, C., Joller, C. et al. 2019. A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity. Sci. Rep. 9: 18778.   DOI
97 Cho, G., Kim, J., Park, C. G., Nislow, C., Weller, D. M. and Kwak, Y.-S. 2017. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi. Open Biol. 7: 170075.   DOI
98 Tyagi, S., Lee, K.-J., Shukla, P. and Chae, J.-C. 2020. Dimethyl disulfide exerts antifungal activity against Sclerotinia minor by damaging its membrane and induces systemic resistance in host plants. Sci. Rep. 10: 6547.   DOI
99 Spinelli, F., Noferini, M., Vanneste, J. L. and Costa, G. 2010. Potential of the electronic-nose for the diagnosis of bacterial and fungal diseases in fruit trees. EPPO Bull. 40: 59-67.   DOI
100 Sri, S., Seethadevi, A., Suria Prabha, K., Muthuprasanna, P. and Pavitra, P. 2012. Microencapsulation: a review. Int. J. Pharm. Bio Sci. 3: P509-P531.
101 Ul Hassan, M. N., Zainal, Z. and Ismail, I. 2015. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol. J. 13: 727-739.   DOI
102 Rajer, F. U., Wu, H., Xie, Y., Xie, S., Raza, W., Tahir, H. A. S. et al. 2017. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology (Reading) 163: 523-530.   DOI
103 Choi, H. K., Song, G. C., Yi, H.-S. and Ryu, C.-M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40: 882-892.   DOI
104 Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026.   DOI
105 Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S. and Srawan, G. Y. 2010. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 27: 187-197.   DOI
106 Chung, J.-H., Song, G. C. and Ryu, C.-M. 2016. Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90: 677-687.   DOI
107 Prosen, H. and Zupancic-Kralj, L. 1999. Solid-phase microextraction. TrAC Trends Anal. Chem. 18: 272-282.   DOI
108 Raza, W., Ling, N., Yang, L., Huang, Q. and Shen, Q. 2016b. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci. Rep. 6: 24856.   DOI
109 Rezende, D. C., Fialho, M. B., Brand, S. C., Blumer, S. and Pascholati, S. F. 2015. Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. Afr. J. Microbiol. Res. 9: 1527-1535.   DOI