• Title/Summary/Keyword: 변형률 경화거동

Search Result 95, Processing Time 0.026 seconds

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

Characteristics of Stress-Strain for Pocheon stone sludge (포천석분의 응력-변형률 거동특성)

  • Kim, Chan-Kee;Bak, Gueon-Jun;Cho, Won-Beom;Lee, Jong-Cheon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • In this study, a series of the isotropic compression-expansion tests and the Undrained triaxial tests were performed on low-plastic silt of Pocheon stone sludge. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data. In experimental results the deviator stress showed the work hardening behaviour after reaching its yield stress. Therefore practically useful failure criterion for low-plastic silt were required. The stress-strain behavior predicted by 11 soil parameters are compared with the results obtained 9 parameters by correlation between h and ${\eta}_1$ and constant ${\alpha}$. They are poor matched each other.

New Stress-Strain Model for Identifying Plastic Deformation Behavior of Sheet Materials (판재의 소성변형 거동을 동정하기 위한 새로운 응력-변형률 모델)

  • Kim, Young Suk;Pham, Quoc Tuan;Kim, Chan Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In sheet metal forming numerical analysis, the strain hardening equation has a significant effect on calculation results, especially in the field of spring-back. This study introduces the Kim-Tuan strain hardening model. This model represents sheet material behavior over the entire strain hardening range. The proposed model is compared to other well known strain hardening models using a series of uniaxial tensile tests. These tests are performed to determine the stress-strain relationship for Al6016-T4, DP980, and CP Ti sheets. In addition, the Kim-Tuan model is used to integrate the CP Ti sheet strain hardening equation in ABAQUS analysis to predict spring-back amount in a bending test. These tests highlight the improved accuracy of the proposed equation in the numerical field. Bending tests to evaluate prediction accuracy are also performed and compared with numerical analysis results.

General Response for Lateral-Torsional Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡-비틀림 좌굴의 일반적 응답에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.119-132
    • /
    • 1992
  • The objective of this study is to perform extensive parametric studies of the lateral-torsional buckling of short 1-beams under repeated loadings, and to gain a further insight into the lateral-torsional beam buckling problem. A one-dimensional geometrically (fully) nonlinear beam model is used, which includes superposed infinitesimal transverse warping deformation in addition to finite torsional warping deformation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm. The general response for the lateral-torsional buckling of short I-beams under repeated loadings is examined through several parametric studies around the standard case : the material yield strength, the yield plateau, the strain hardening, the kinematic hardening, the residual stresses, the load eccentricity with respect to the shear center, the height of the load with respect to the cross-section of the beam, the location of the load along the length of the beam, the dimensions of the cross-section of the beam and the fixity of the supported end remote from the load.

  • PDF

The Strength Characteristics of PVA Fiber Reinforced CSG Materials (PVA섬유 보강 CSG 재료의 강도특성)

  • Jin, Guang-Ri;Kim, Ki-Young;Quan, He-Chun;Kim, Kyu-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.95-104
    • /
    • 2013
  • Recently, application of CSG is increasing in various design construction projects. At the initial stage of cementation CSG materials show the same mechanical characteristics as soil, however, as the cementation process develops, CSG materials gradually reveal material characteristics of concrete. The hardened CSG manifests elastic behavior such as maximum strength at small strain range and rapid brittle failure. In this research, PVA fiber stiffeners were used in order to: (1) reduce such brittle behavioral characteristics; (2) improve the relatively weak tension performance of CSG materials. The binding strength between the bed materials and fiber prevents rapid brittle failure and increases tensional strength of fiber reinforced CSG materials.Test results show that fiber reinforcement alone could induce the stress-strain characteristics of CSG materials from brittle failure to ductile failure and also increase the residual strength.

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M)(II)-Evaluation of Low Cycle Fatigue Characteristics- (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구 (II) -저사이클 피로특성 평가-)

  • Gwon, Jae-Do;U, Seung-Wan;Park, Jung-Cheol;Lee, Yong-Seon;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2183-2190
    • /
    • 2000
  • A thermal aging is observed in a primary reactor cooling system(RCS) made of a casting stainless steel when the RCS is exposed for long period at the reactor operating temperature, 290~3300C An investigation of effects of thermal aging on a low cycle fatigue characteristics included a stress variations caused by a reactor operation and trip, is required. The purpose of the present investigation is to find an effect of a thermal aging of the CF8M on a low cycle fatigue life. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 300 and 1800hr at 4300C respectively. The low cycle fatigue tests for the virgin and two aged specimens are performed at the room temperature for various strain amplitudes($\varepsilon$ta), 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5% strain. Through the experiment, it is found that the fatigue life is rapidly reduced with an creasing of the aging time. The experimental fatigue life estimation formulas between the virgin and two aged specimen are obtained and are proposed to a analysis purpose.

Effect of Transfer mode on the Overlay weldment in GMA welding (GMA용접에 용접이행모드가 오버레이 용접부에 미치는 영향)

  • Kim, Nam-Hoon;Koh, Jin-Hyun;Seo, H-H;Kim, I-J;Kim, J-K
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.382-384
    • /
    • 2011
  • 최근 오일샌드, 극지유전, 심해저자원 등 극한지 자원개발이 활발해짐에 따라 수요가 증대되고 있는 극한지용 내마식 소재는 내마식성과 함께 저온 인성이 요구되고 있다. 철계 합금에서 관찰되는 변형유기 마르텐사이트 상변태는 입자의 충돌에 의한 충격을 흡수하고 소재의 표면을 가공경화시켜 내마식성 향상 및 저온 인성에 기여할 수 있을 것으로 기대되고 있지만 합금조성의 정교한 제어가 필요하기 때문에 오버레이 용접에 적용하기 위해서는 모재와의 희석률을 제어하는 방안이 필요하다. 용접플럭스 설계기술은 용접시 금속이행모드, 용융풀 거동 등과 같은 용접현상 제어를 통해 오버레이 용접재료의 용접성과 용접비드형상, 용접부 희석률을 최적화할 수 있는 기술이다. 본 연구에서는 내마식 고인성 오버레이 용접재료의 개발을 위해 다양한 용접플럭스를 첨가한 메탈코어드 와이어를 제조하고 일정 송급속도에서 GMA 용접시 용접전압과 용접전류 간의 관계를 분석하여 용접플럭스가 아크현상 및 희석률에 미치는 영향을 조사하였다.

  • PDF

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.