• Title/Summary/Keyword: 변조전달함수(MTF)

Search Result 81, Processing Time 0.022 seconds

A Study on the MTF Analysis for the Three Primary Colors of Light within Diffraction-Limitted System (회절제한시스템에 속한 빛의 3원색의 변조전달함수 해석에 관한 연구)

  • Che, Kyu-Shik;Chang, Won-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.863-866
    • /
    • 2012
  • The optical system develops remarkably as well as the development of civilization. The modulation transfer function(MTF) was introduced as one of the important estimation methods to estimate the performance of optical systems. The calculation of MTF is very boring and tiresome. We express the MTF curves three primary colors of light in the diffraction-limitted systems.

  • PDF

Evaluation of the Modulation Transfer Function for Computed Tomography by Using American Association Physics Medicine Phantom (컴퓨터단층검사에서 AAPM Phantom을 이용한 변조전달함수 평가)

  • Kim, Ki-Won;Choi, Kwan-Woo;Jeong, Hoi-Woun;Jang, Seo-Goo;Kwon, Kyung-Tae;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.193-198
    • /
    • 2016
  • In clinical computed tomography (CT), regular quality assurance (QA) has been required. This study is to evaluate the MTF for analyzing the spatial resolution using AAPM phantom in CT exam. The dual source somatom definition flash (siemens healthcare, forchheim, Germany), the brilliance 64 (philips medical system Netherlands) and aquilion 64 (toshiba medical system, Japan) were used in this study. The quantitative evaluation was performed using the image J (wayne rasband national institutes of health, USA) and chart method which is measurement of modulation transfer function (MTF). In MTF evaluation, the spatial frequencies corresponding to the 50% MTF for the CT systems were 0.58, 0.28, and $0.59mm^{-1}$, respectively and the 10% MTF for the CT systems were 1.63, 0.89, and $1.21mm^{-1}$, respectively. This study could evaluate the characteristic of spatial resolution of MTF using chart method, suggesting the quantitative evaluation method using the data.

A Study on the Resolution Analysis of Digital X-ray Images with increasing Thickness of PMMA (조직 등가물질 두께 증가에 따른 디지털 엑스선 영상의 해상도 분석에 관한 연구)

  • Kim, Junwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.173-179
    • /
    • 2021
  • Scattered x-ray generated by digital radiography systems also have the advantage of increasing signals, but ultimately detectability is reduced by decreasing resolution and increasing noise of x-ray images transmitted objects. An indirect method of measuring scattered x-ray in a modulation-transfer function (MTF) for evaluating resolution in a spatial-frequency domain can be considered as a drop in the MTF value corresponding to zero-frequency. In this study, polymethyl methacrylate (PMMA) was used as a patient tissue equivalent, and MTFs were obtained for various thicknesses to quantify the effect of scattered x-ray on resolution. X-ray image signals were observed to decrease by 35 ~ 83% with PMMA thickness increasing, which is determined by the absorption or scattering of x-rays in PMMA, resulting in reduced MTF and increased scatter fraction. The method to compensate for MTF degradation by PMMA resulted in the MTF inflation without considering the optical spreading generated by the indirect-conversion type detector. Data fitting or zero-padding are needed to compensate for MTF more reasonably on edge-spread function or line-spread function.

A Study on the MTF of optical system with optical path difference (광경로차가 있는 광학기기의 변조전달함수에 관한 연구)

  • Che, Gyu-Shik;Jang, Won-Seok;Oh, Jake
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.518-525
    • /
    • 2012
  • The modulation transfer function is generally used as a method to estimate the characteristics of this kind of optical system because it cannot reappear or implement image of the object perfect. By the way, it is difficult to assess the optical system with existing MTF method since the reaction between diffraction and aberration of aperture is very complicate if the aberration is very small. The MTF has to be calculated considering the numerical aperture, defocusing, OPD and phase difference. We validate its feasibility using bessel function as an estimating method, and then realize it through illustration in this paper.

Study of MTF Measure That Adopts a Fitting Curve for the Variable Angle of a Slant Target in Presampled MTF (Presampled MTF 기법에서 Slant Target의 다양한 각도에 대한 함수 Fitting이 적용된 MTF 측정기법에 관한 연구)

  • Choi, Siyoun;Kim, Junghwan;Kong, Hyunbae;Kim, Donghwan;Baek, Kyounghoon;Park, Ingu;Jeon, Hyowon;Lee, Kinam
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.310-316
    • /
    • 2022
  • In this paper, the difference in modulation transfer function (MTF) results according to the change in the angle of a slant target when measuring a presampled MTF was confirmed, and the difference was reduced by fitting the edge spread function graph obtained to reduce the error by the target's rotation. Due to the feature of the presampled MTF method, the spatial frequency changed due to the sensor's projected intensity being changed by the target's rotation, and it was confirmed that the difference in the MTF value occurred depending on the rotation angle of the target. In this paper, the MTF was calculated after fitting only one column of the acquired image. It was confirmed that the rotation error is smaller compared to the case of the presampled MTF method and this fitting method can be applied to a scene that contains various target angles, such as auto-focusing using the MTF.

Evaluation of the Spatial Resolution for Exposure Class in Computed Radiography by Using the Modulation Transfer Function (변조전달함수를 이용한 컴퓨터 방사선영상의 감도 노출 분류에 따른 공간분해능 평가)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.273-279
    • /
    • 2013
  • The purpose of the study was to present basic data to evaluation of the spatial resolution for exposure class(EC) in computed radiography(CR) by using the modulation transfer function(MTF). In this study, MTF was measured the edge method by using image plate(IP) of $100{\mu}mm$ pixels. A standard beam quality RQA5 based on an international electro-technical commission(IEC) standard was used to perform the X-ray imaging studies. Digital imaging began to set the sensitivity to EC 50, 100, 200, 300, 400, 600, 800, 1200 in X-ray irradiated to IP. The MTF 50% and 10% in the final images was analysis by using an authorized image analysis program the Origin 8.0 and the image J. As a results, the EC 200 was the best spatial resolution at MTF 50% ($1.979{\pm}0.114lp/mm$) and MTF 10% ($3.932{\pm}0.041$). Therefore, the EC 200 could be useful for the diagnosis of diseases that require high spatial resolution such as fractures.

Effects of the Geometrical Misalignment on the MTF Measurement (변조전달함수 측정에 있어 기하학적 조정 불량이 해상도에 미치는 영향)

  • Kim, Jun-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.705-713
    • /
    • 2021
  • The modulation transfer function (MTF) is calculated to analyze the resolution of the spatial frequency of the image acquired from the x-ray imaging system. In general, the response function of the detector acquires a line spread function (LSF) using a slit-camera, and derives a modulation transfer function through a Fourier transform. Because of the fact that the x-ray must always be incident on the center of the slit-camera, the tilt of the detector and slit-camera caused by the experimenter will affect the detector performance. In addition, if the tilt increases, the performance evaluation of the x-ray image system will be problematic. In this study, we analyzed the experimental and analytical models in the modulation transfer function, ie, the Fourier domain, based on the experimental error and analyzed the effect on the spatial frequency. Furthermore, performance evaluation is being carried out for various x-ray imaging systems, and experimental errors are indispensable, and the extent to which they can be tolerated should be reviewed.

MTF Measuring Equipment of Optical System for LCD Substrate Inspection (LCD 기판 검사 광학계의 MTF 측정장치 제작)

  • Hong, Sung-Mok;Kim, Hee-Nam;Jo, Jae-Heung;Lee, Yun-Woo;Lee, Hoi-Youn;Yang, Ho-Soon;Lee, In-Won;Jung, Jin-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • We developed the equipment to measure the MTF(modulation transfer function) of an optical system for automatically inspecting the surface condition of an LCD substrate. We have made an object generator with USAF(United States Air Force) targets of three bar patterns and an integrating sphere, and an image analyzer with a 2 dimensional CCD(charge coupled device) and a relay lens. The MTF of the lens under test was obtained by correcting the measured CTF(contrast transfer function) which is the ratio of the contrast in the image of the USAF target to the contrast in the object. We have measured an optical system of F/13.65 (2.6x), the MTF are 30.6 % tangential plane and 26.1 % sagittal plane at 62.5 1p/mm.

Development of Measuring System for Camera Lens Resolution Based on the MTF Performance (MTF 측정에 의한 카메라 렌즈 해상력 검사 시스템 개발)

  • 박희재;신호승;노영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.629-634
    • /
    • 2000
  • This System is developed for the estimation of the Camera Lens Resolution. Signal data proportional to light intensity is obtained and sampled from the 2D CCD. Based on the measured signal. the MTF charateristcs of a camera lens are measured. We could measure the sagittal and tangential MTF in the on and off-axis at the same time. The automatic measurig methods for optimal image plane, magnification, and best marginal direction of test lens are presented.

  • PDF

Modulation Transfer Function System for a Mid-infrared Lens by Knife-edge Scanning Technique (칼날 주사방식을 이용한 중적외선 렌즈의 변조전달함수 측정 장치)

  • Song, Se-Yong;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Hoi-Youn;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • We fabricate a measuring system to measure the modulation transfer function (MTF) of a mid-infrared imaging silicon lens by using the knife-edge scanning technique. In particular, we measure on-axial tangential MTF of the silicon lens with the focal length of 50 mm and F-number F/4 in the wavelength band of mid-infrared between $3\;{\mu}m$ and $5\;{\mu}m$. In order to obtain the infinite object, the off-axial parabolic reflector with the focal length of 2.545 m is utilized. In the comparison with measured MTF data and designed MTF values curve, we find that the tolerance of measured MTF data below the spatial frequency of 7 lp/mm is within 2%.