• 제목/요약/키워드: 변동성 함수

검색결과 383건 처리시간 0.026초

함수형 ARCH 분석 및 다변량 변동성을 통한 일중 로그 수익률 시간 간격 선택 (Functional ARCH analysis for a choice of time interval in intraday return via multivariate volatility)

  • 김다희;윤재은;황선영
    • 응용통계연구
    • /
    • 제33권3호
    • /
    • pp.297-308
    • /
    • 2020
  • 본 논문에서는 고빈도 함수적 ARCH 모형을 소개하고 근사모형으로써 다변량 변동성 모형을 고려하였다. 이를 기반으로 함수형 변동성 분석에서 중요한 요소인 일중 로그 수익률의 적절한 시간 간격을 찾아보았다. 또한 함수적 ARCH 모형에서 l-시차 후 변동성 예측식을 제시하고 고빈도 KOSPI 자료에 적합하여 예시하였다.

FPCA를 통한 고빈도 시계열 변동성 분석: R함수 소개와 응용 (FPCA for volatility from high-frequency time series via R-function)

  • 윤재은;김종민;황선영
    • 응용통계연구
    • /
    • 제33권6호
    • /
    • pp.805-812
    • /
    • 2020
  • 본 논문은 최근 금융시계열 분야에서 자주 등장하는 고빈도 시계열 변동성 분석을 다루고 있다. 고빈도 시계열 변동성 분석을 위해 차원 축소를 목적으로 하는 함수형 주성분분석을 적용하였으며 이를 수행하는 R의 두 함수를 비교하고 있다. 응용으로서, KOSPI 고빈도 자료에 적용해 보았다.

시뮬레이션을 이용한 대기행렬 네트워크 도착과정의 변동성함수에 관한 연구 (A Simulation Study on the Variability Function of the Arrival Process in Queueing Networks)

  • 김선교
    • 한국시뮬레이션학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2011
  • 본 연구에서는 대기행렬네트워크 성과측정 방법 중의 한 가지로서 널리 이용되는 분해법의 구성요소로 제안된 변동성 함수 의 이론적 근거를 살펴보고 성과척도 측정의 정확도 제고를 위하여 회귀분석을 통한 변동성 함수의 모수추정 개선방안을 제안하고자 한다. 이를 위하여 변동성이 높은 도착과정과 서비스 과정이 포함된 직렬 대기행렬 네트워크에서의 이탈과정의 자동상관계수 함수를 추정하여 분해법에 사용할 수 있는 방안을 알아본다.

함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성 (The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series)

  • 윤재은;김종민;황선영
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.667-675
    • /
    • 2018
  • 초고빈도(ultra high frequency; UHF)시계열의 함수적 변동성 측정을 위한 최신 기법인 함수적 변동성 functional GARCH : fGARCH(1, 1) 모형을 소개하고 설명하였다. 실증분석을 위해 R-code fGARCH(1, 1) 프로그램을 KOSPI/현대차 초고빈도 수익률 자료에 적합하여 예시하였다.

계절변동의 함수적 예측 (Functional Forecasting of Seasonality)

  • 이긍희
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.885-893
    • /
    • 2015
  • 통계청과 한국은행 등 통계작성기관에서 이용되고 있는 계절조정은 연간 경제통계 작성시 시계열을 예측한 후 계절조정방법을 적용하여 1년 후 계절변동을 예측하고 원통계 작성시 원통계에서 이를 제거하여 계절조정계열을 작성하고 있다. 이 경우 계절변동을 효과적으로 예측하는 것이 계절조정계열의 품질 향상을 위해 무엇보다 중요하다. 계절변동은 1년 단위로 비슷한 함수적 형태를 지니면서 변하므로 계절변동은 일종의 함수적 시계열이다. 함수적 시계열은 함수적 주성분분석을 바탕으로 한 함수적 시계열모형으로 예측할 수 있다. 본 연구에서는 함수적 시계열 모형을 이용하여 향후 1년간 계절변동을 예측하는 방안을 마련하고 X-11 방식 등 기존의 예측방법과 비교하여 유용성을 파악하였다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.

이차형식 변동성 Q-GARCH 모형의 비교연구 (Quadratic GARCH Models: Introduction and Applications)

  • 박진아;최문선;황선영
    • 응용통계연구
    • /
    • 제24권1호
    • /
    • pp.61-69
    • /
    • 2011
  • 다양한 GARCH류 모형들의 변동성 함수를 살펴보면 흥미롭게도 거의 대부분 모형에서 수익률의 일차항( rst or der term)이나 수익률과 변동성의 교차항(interaction term)이 나타나지 않는다. 일차항과 교차항은 변동성의 비대칭성을 설명하는 역할을 할 수 있으며 $h_t$의 회귀분석식의 형태로 볼 때 변동성 함수의 일반적인 이차형식(quadratic form)을 구성한다고 할 수 있다. 본 논문에서는 변동성과 수익률들 사이의 교차항 및 일차항을 포함한 이차형식(quadratic form) 변동성 모형들을 소개하고, 국내 금융시계열 자료에 적용한 후 비교 분석하고자 한다.

고빈도 시계열 분석을 위한 함수 변동성 fARCH(1) 모형 소개와 예시 (Functional ARCH (fARCH) for high-frequency time series: illustration)

  • 윤재은;김종민;황선영
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.983-991
    • /
    • 2017
  • 본 논문은 고빈도 시계열 자료 분석을 위한 최신 함수-변동성 functional ARCH : fARCH(1) 모형을 독자들에게 소개하고 국내 자료 적합을 예시하고 있다. fARCH(1) 모형을 KOSPI/현대차 1분 단위 고빈도 수익률 자료에 적합하여 기존의 ARCH 모형에서는 할 수 없었던 다이나믹한 일중(intraday) 변동성을 추정할 수 있음을 보여주고 있다.

폭함수 단위도법을 이용한 시공간 강우변동의 유출영향 평가 (Evaluation of spatio-temporal rainfall variation on runoff focusing on masan areas)

  • 권유정;서용원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.313-313
    • /
    • 2020
  • 여름철 발생하는 집중호우는 해안지역 및 하천유역의 저지대에 상습적인 침수를 유발하며, 도시지역은 높은 불투수율로 인해 추가적인 침수 피해가 발생하는 경우가 많다. 본 연구에서는 폭함수를 통해 하천망의 공간적인 특성을 함수형태로 나타내어 유역의 수문분석에 이용하는 폭함수 단위도법(WFIUH, Width Function Instantaneous Unit Hydrograph)을 소개하고, 적용성을 검토하기 위하여 실제 유역 및 강우 사상에 적용해보았다. WFIUH는 기존의 집중형 수문모형과 다르게 매개변수를 물리적으로 결정할 수 있으며, 유역특성과 시공간적 변동성을 수문곡선 산정에 반영할 수 있는 장점이 있다. WFIUH의 적용성을 검토하기 위하여 2003년 한반도에 심각한 침수피해를 입힌 태풍 매미로 인해 발생한 강우사상과 그로인해 큰 피해가 있었던 마산 지역의 남천, 삼호천 일부 유역을 대상으로 강우-유출 분석을 실시하였다. 분석결과 범용 수문모형인 HEC-HMS와 비교 시 유사한 결과를 보이며, 실제 관측치와도 유사한 결과를 보이는 것으로 나타났다. 또한 강우의 이동을 반영하여 강우의 이동이 수문곡선과 첨두유량에 미치는 영향을 비교분석 하였다.

  • PDF

온도와 물성의 불확실성을 고려한 고무의 복소계수 변동성 평가 (Estimation of Variability for Complex Modulus of Rubber Considering Temperature and Material Uncertainties)

  • 이두호;황인성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.362-365
    • /
    • 2011
  • 본 논문에서는 통계적인 방법을 이용하여 점탄성 제진재인 합성고무의 물성에 대한 변동성을 평가하는 방법을 제안하고 측정데이터를 이용하여 합성고무에 대한 평가를 수행하였다. 고무 물성의 불확실성 인자로는 외기 온도의 변화와 실험 데이터의 오차 및 점탄성 제진모델의 오차를 고려하였다. 고무는 분수차 미분 모델로 표현되었고 온도의 영향은 비선형 이동계수모델을 도입하여 복소계수로 나타내어 동강성과 감쇠를 표현하였다. 이러한 물성모델을 바탕으로 고무에 대한 물성 실험데이터와 물성계수의 확률밀도함수 사이에 정의된 우도함수를 최대화하는 통계적 보정방법을 이용하여 물성모델의 물질계수들에 대한 변동성을 추정하였다.

  • PDF