이 논문은 문맥 독립 화자인식에 사용될 벡터 양자기의 설계법 개선에 관한 연구이다. 구체적으로 벡터 양자기 코드북 생성 과정에서 특징 벡터 공간을 분할하여, 양자기 설계 시 학습에 필요한 계산 복잡도를 획기적으로 줄이는 방법을 제안한다. 제안된 공간 분할 벡터 양자기 설계법은 저자가 제안한 문맥 종속 화자인식을 위한 준비반복 벡터 양자기 설계법의 벡터 공간에 대한 일반화이다. 공간 분할 벡터 양자기 설계법은 종래의 설계법이 코드북 생성에 반복적 학습 설계를 사용한다는 것과 대조를 이룬다. 또한 공간 분할 벡터 양자기 설계법의 특징은 다음과 같다. 첫째, 이 설계법은 특징 벡터 공간을 분할한 공간 분할 군집을 이용함으로써 반복 학습을 하지 않는다. 둘째, 설계된 각 양자 영역은 공간 분할 군집의 양자 영역을 원용하며, 양자점은 각각의 통계 분포에 대해 최적점으로 설정된다. 셋째, 공간 분할 군집은 특징 벡터 집합에 대해 표본 벡터 생성법(CSVQ1, 2), 특징 벡터 공간에 대해 균일 초격자 구조 생성법(CSYQ3)으로 형성하였다. 수치 실험은 화자 10명이 발성한 50개의 문장에 대해 문맥 독립 화자인식 실험으로 수행되었다. 특징계수는 12차 멜켑스트럼 벡터를 사용하였고 각각의 공간 분할 코드북 생성법에 대해 코드북 크기를 32부터 128까지 변화시키면서 기존의 벡터 양자기 인식법과 비교하였다. 제안된 방법은 표본 벡터 생성법을 사용한 경우 인식률 100%로 기존의 방법과 같은 결과를 보였다. 따라서 제안된 공간 분할 벡터 양자기 설계법은 설계에 필요한 계산량이 획기적으로 줄면서 인식률은 보존되어 문맥 독립 화자 인식에 새로운 대안이 되며 또한 특징 벡터 공간을 설정할 수 있는 다양한 응용에 적용이 가능할 것으로 사료된다.
높은 전송률에서 엔트로피 제한 양자화를 수행 시 최적의 양자기는 격자(lattice) 형태의 부호책을 가지는데, 규칙적인 구조로 인하여 양자화 과정이 단순하며, 격자의 형태에 따라 여러 양자화 알고리듬이 제안되어있다. 이러한 격자 벡터 양자기(vector quantizer: VQ)는 표본 적응 프로덕트 양자기(sample-adaptive product quantizer: SAPQ)를 사용하여 구현이 가능하며, 그 출력도 단순하게 엔트로피 부호화가 가능하다. 본 논문에서는 SAPQ에 기초한 엔트로피 부호화 방법을 제안하고, 무기억성(memoryless) 가우시언 분포에 대하여 여러 제안한 격자 VQ를 구현하고 양자화 에러 곡선을 엔트로피에 대하여 구하여 그 성능을 비교하였다. 실험을 통하여 전송률이 증가하면서 균등 분포에 이론적으로 얻는 이득과 비슷한 이득을 무기억성 가우시언 분포에서도 SAPQ의 출력을 엔트로피 부호화함으로 얻을 수 있음을 확인하였다.
본 논문에서는 기존의 DPCM에 의한 압축방법보다 더 낮은 비트율을 갖는 압축방 법을 제안한다. 각 화소의 예측오차 값은 DPCM방법에 의해 양자화되고, 양자화된 예측오차 의 열은 예측오차의 학습된 열로 구성된 코드북과 비교된다. 비교과정은 벡터양자화 방법과 동일하고, 그 결과 코드북의 주소를 생성한다. 제안된 방법은 DPCM과 동일한 복원 영상의 화질을 보이지만, 더 낮은 비트율을 얻을 수 있다.
음성코딩 시 성도는 Linear Predictive Coding (LPC) 계수를 이용해서 모델링 한다. 일반적으로 LPC 계수는 양자화와 선형보간 관점에서 유리한 Line Spectral Frequency (LSF) 파라미터로 변경하여 사용한다. 10차 이상의 다차원 LSF 데이터를 벡터 양자화를 이용하여 직접 코딩하게 되면 벡터 내 상관관계 (intra-frame correlation)를 모두 이용할 수 있으므로 rate-distortion 관점에서는 높은 효율을 기대할 수 있다. 하지만, 계산량과 메모리 요구량이 높아져서 실제 코딩 시스템에서는 사용할 수 없게 되므로, 차원을 나누어 압축하는 Split Vector Quantization (SVQ)이 이용된다. 또한, LSF 데이터는 과거 벡터와의 벡터 간 상관관계 (inter-frame correlation)가 높으므로, 이를 이용한 Predictive Split Vector Quantization (PSVQ)이 사용되고 있다. PSVQ는 SVQ 보다 높은 rate-distortion 성능을 보인다. 본 논문에서는 음성 저장 장치를 위한 최적의 PSVQ를 구현하기 위해서 다수의 과거 프레임 정보와의 벡터 간상관관계 (inter-frame correlation)를 고려한 Multi-Frame AR-model 기반 SVQ (MF-AR-SVQ)를 제안하였다. 기존 PSVQ와 비교해 보았을 때, MF-AR-SVQ는 계산량과 메모리 요구량의 큰 증가 없이, 평균 spectral distortion 관점에서 약 1비트의 성능 향상을 보였다.
본 논문에서는 멀티미디어 정보검색을 위하여 영상정보의 특징추출에 적합한 벡터 양자화 코드북 설계 방법을 제안한다. 기존의 벡터 양자화의 경우 영상에 대한 특징을 추출할 경우 보통 영상을 복원한 다음 수행하므로 많은 시간과 메모리가 소요되며, DCT(discrete cosine transform)를 이용한 방법처럼 블록화 현상을 동반한다. 이를 개선하기 위하여 본 논문에서는 웨이브렛 변환과 주성분 해석을 이용한 벡터 양자화 코드북 설계 방법을 제안한다. 웨이브렛 변환은 높은 압축률에서도 블록화 없는 영상을 복원하기 위해서 도입되었으며, 주성분해석은 데이터를 여러 그룹으로 분할하기 위해 도입되었다. 신경회로만인 SOM(self-organizing map)을 이용한 벡터 양자화와 비교실험에서 비슷한 성능을 보이면서도 처리 시간을 대폭 단축시킬 수 있음을 볼 수 있었다.
칼라가 물체 인식에 아주 효율적인 단서를 제공하지만 칼라 분포는 시청 조건과 카메라의 위치에 아주 큰 영향을 받는다. 생김새와 모양의 변화에 의한 칼라 분포 변화 문제를 해결하기 위해 본 논문에서는 밝기 값의 변화에 영향을 받지 않고, 색상(hue) 성분에 민감한 칼라 벡터각(color vector angle)을 이용하여 칼라 에지를 추출한 후, 영상의 화소들을 평탄 화소와 에지 화소로 구분하여 칼라 특징 값을 추출하였다. 에지 화소의 경우에는 에지 주위 칼라 쌍의 전체 분포를 HLS 색좌표계의 비균일 양자화를 통해 칼라 인접 히스토그램(color adjacency histogram)으로 표현하고, 평탄 화소의 경우에는 HLS 색좌표계의 비균일 양자화와 칼라 벡터각 균일 양자화를 통해 칼라 벡터각 히스토그램(color vector angle histogram)을 구성하여 공간적인 칼라분포를 표현하였다. 제안한 칼라 히스토그램을 이용하여 영상 검색에 적용하여 성능을 실험한 결과, 작은 빈의 수를 가지는 제안한 방법이 기존의 방법들보다 훨씬 효율적이고, 생김새와 모양의 변화에 아주 강건한 영상 검색이 가능하였고, 기존의 칼라 히스토그램 역투사 방법보다 훨씬 정확한 물체 위치 추정이 가능함을 확인할 수 있었다.
본 논문은 스펙트럴 크기 파라미터들에 대한 효율적인 가변 차원 양자화 기법을 제안한다. 특히, 하모닉 부호화 기에서의 스펙트럴 크기값 계수들은 가변차원이기 때문에 가변 차원의 양자화를 필요로 한다. 따라서, 본 논문에서는 스펙트럴 크기값 계수들에 대해 가변 이산 코사인 변환(DCT: Discrete Cosine Transform) 및 가변 차원에 적합한 훈련구조를 가지는 비정방형 변환 벡터 양자화 (NSTVQ: Nonsquare Transform Vector Quantization)를 홀수/짝수 구조 및 분할(Split) 구조 그리고 다단계(Multi-stage) 구조 등과 결합시킨 효율적인 양자화 기법을 제안한다. 제안된 양자화 기법의 성능평가는 스펙트럴의 크기값에 대한 주파수 왜곡(SD: Spectral Distortion) 값을 사용하였으며, 다단계 비정방형 변환 벡터 양자화(MSNSTVQ: Multi-Stage Nonsquare Transform Vector Quantization)가 가장 좋은 성능을 나타내었다.
본 논문에서는 고품질 음성 서비스를 가능하게 하는 광대역 음성 부호화기의 선 스펙트럼 주파수 (line spectral frequency: ISF) 계수 양자화기를 설계하였다. 광대역 음성 부호화기를 위한 효율적인 LSF 계수 양자화기를 설계하기 위하여, 인접 프레임간의 상관도를 이용하였으며, 각 해당 프레임의 ISF 계수에 대한 양자화를 인접 프레임간 상관도가 높은 프레임과 상관도가 낮은 프레임으로 나누어 독립적으로 수행하였다. 인접 프레임간 상관도가 높은 프레임의 LSF계수 양자화를 위하여 예측 피라미드형 벡터 양자화기 (predictive pyramid vector quantizer: PPVQ)를 사용하여 양자화하였고, 상관도가 낮은 프레임의 LSF 계수는 피라미드형 벡터 양자화기 (PVQ)를 사용하여 양자화 하였다. PPVQ에서 예측기로 1차 AR 예측기를 사용하였다. 광대역 음성 부호화기를 위해 본 논문에서 설계된 UF 계수양자화기를 평균스펙트럼 왜곡(spectral distortion: SD) 성능 관점에서 실험한 결과, LSF계수 양자화에 할당된 비트가 프레임당 40비트일 때, 평균 SD값이 1 dB 내외이고, 2 dB 이상 및 4 dB 이상 outlier가 각각 3.87%및 0.01%인 transparent한 성능을 얻을 수 있었다.
본 논문에서는, 매우 낮은 전송율이 요구되는 음성통신의 환경하에서 CELP 음성 부호기를 사용할 경우, 스펙트럼에 대한 정보를 어떻게 효과적으로 나타낼 것인가에 대하여 고찰하였다. 구체적으로, 스펙트럼에 대한 정보를 나타내는 LPC 파라메타를 cepstrum으로 변형시키고, 변형된 LPC cepstrum계수들을 효과적으로 벡터 양자화하는 방법을 제시하였다. 벡터 양자화에 사용되는 코드-북의 설계를 위하여, 주파수 대역에서 서로 다른 의미를 갖는 세계의 cepstral distance measure들을 시도하였으며, 각각에 대한 성능이 분석되어졌다. 시뮬레이션을 통하여, 본 논문에서 제시한 LPC cepstral 벡터 양자화 방식이 스펙트럼에 대한 정보를 매우 효과적으로 나타낼 수 있음을 보였다.
액티브 데이터는 벡터 양자화 코드북이 생성될 때 소속된 군집이 변경되는 입력 데이터이다. 벡터 양자화 코드북 생성 알고리즘의 수행 과정을 살펴보면, 전체 입력 데이터 중 실제 액티브 데이터는 알고리즘이 반복될 수록 감소된다. 따라서 액티브 데이터를 정확히 추정하여, 추정된 액티브 데이터에 대해서 코드북 생성을 수행하면, 전체 코드북 생성 시간을 크게 단축할 수 있다. 본 논문에서는 삼각 부등식을 이용하여 액티브 데이터를 선택하는 방법을 제안한다. 실험결과 액티브 데이터들을 빠른 시간에 추정할 할 수 있었고, 이를 통해 전체 벡터 양자화 코드북 생성 시간 측면에서 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.