DOI QR코드

DOI QR Code

Quantization of LPC Coefficients Using a Multi-frame AR-model

Multi-frame AR model을 이용한 LPC 계수 양자화

  • 정원진 (세종대학교 정보통신공학과) ;
  • 김무영 (세종대학교 정보통신공학과)
  • Received : 2011.11.14
  • Accepted : 2012.01.20
  • Published : 2012.02.29

Abstract

For speech coding, a vocal tract is modeled using Linear Predictive Coding (LPC) coefficients. The LPC coefficients are typically transformed to Line Spectral Frequency (LSF) parameters which are advantageous for linear interpolation and quantization. If multidimensional LSF data are quantized directly using Vector-Quantization (VQ), high rate-distortion performance can be obtained by fully utilizing intra-frame correlation. In practice, since this direct VQ system cannot be used due to high computational complexity and memory requirement, Split VQ (SVQ) is used where a multidimensional vector is split into multilple sub-vectors for quantization. The LSF parameters also have high inter-frame correlation, and thus Predictive SVQ (PSVQ) is utilized. PSVQ provides better rate-distortion performance than SVQ. In this paper, to implement the optimal predictors in PSVQ for voice storage devices, we propose Multi-Frame AR-model based SVQ (MF-AR-SVQ) that considers the inter-frame correlations with multiple previous frames. Compared with conventional PSVQ, the proposed MF-AR-SVQ provides 1 bit gain in terms of spectral distortion without significant increase in complexity and memory requirement.

음성코딩 시 성도는 Linear Predictive Coding (LPC) 계수를 이용해서 모델링 한다. 일반적으로 LPC 계수는 양자화와 선형보간 관점에서 유리한 Line Spectral Frequency (LSF) 파라미터로 변경하여 사용한다. 10차 이상의 다차원 LSF 데이터를 벡터 양자화를 이용하여 직접 코딩하게 되면 벡터 내 상관관계 (intra-frame correlation)를 모두 이용할 수 있으므로 rate-distortion 관점에서는 높은 효율을 기대할 수 있다. 하지만, 계산량과 메모리 요구량이 높아져서 실제 코딩 시스템에서는 사용할 수 없게 되므로, 차원을 나누어 압축하는 Split Vector Quantization (SVQ)이 이용된다. 또한, LSF 데이터는 과거 벡터와의 벡터 간 상관관계 (inter-frame correlation)가 높으므로, 이를 이용한 Predictive Split Vector Quantization (PSVQ)이 사용되고 있다. PSVQ는 SVQ 보다 높은 rate-distortion 성능을 보인다. 본 논문에서는 음성 저장 장치를 위한 최적의 PSVQ를 구현하기 위해서 다수의 과거 프레임 정보와의 벡터 간상관관계 (inter-frame correlation)를 고려한 Multi-Frame AR-model 기반 SVQ (MF-AR-SVQ)를 제안하였다. 기존 PSVQ와 비교해 보았을 때, MF-AR-SVQ는 계산량과 메모리 요구량의 큰 증가 없이, 평균 spectral distortion 관점에서 약 1비트의 성능 향상을 보였다.

Keywords

References

  1. F. Itakura, "Line Spectrum Representation of Linear Predictive Coefficients of Speech Signal," J. Acoust. Soc. Amer., vol. 57, suppl. 1, pp. S35(A), 1975.
  2. 김해진, 강상원, "효율적인 LSF 양자화기를 이용한 QCELP 성능개선," 한국음향학회지, 16권, 1호, 10-15쪽, 1997.
  3. K. K. Paliwal and B. S. Atal, "Efficient Vector Quantization of LPC Parameters at 24 Bits/Frame," IEEE Trans. Speech and Audio Proc., vol. 1, no. 1, pp. 3-14, 1993. https://doi.org/10.1109/89.221363
  4. F. Nordin and T. Eriksson, "On split quantization of LSF parameters," IEEE Int. Conf. Acoust. Speech and Signal Proc., vol. 1, pp. I-157-60, 2004.
  5. S. So and K. K. Paliwal, "Switched split vector quantization of line spectral frequencies for wideband speech coding," in Proc. European Conf. Speech Commun. Tech (INTERSPEECH -2005), pp. 2705-2708, 2005.
  6. S. So and K. K. Paliwal, "Efficient product code vector quantization using the switched split vector quantizer," Digital Signal Proc., vol. 17, no. 1, pp. 138-171, 2007. https://doi.org/10.1016/j.dsp.2005.08.005
  7. W. P. LeBlanc, B. Bhattacharya and S. A. Mahmoud, "Efficient Search and Design Procedures for Robust Multi-Stage VQ of LPC Parameters for 4 kb/s Speech Coding" IEEE Trans. Speech Audio Proc., vol. 1, no. 4, pp. 373-385, 1993. https://doi.org/10.1109/89.242483
  8. T. Eriksson, J. Linden and Jan Skoglund, "Interframe LSF Quantization for Noisy Channels," IEEE Trans. Speech Audio Proc., vol. 7, no. 5, pp. 495-509, 1999. https://doi.org/10.1109/89.784102
  9. S. Chatterjee and T.V. Sreenivas, "Predicting VQ Performance Bound for LSF Coding," IEEE Signal Proc. Letter, vol. 15, pp. 166-169, 2008. https://doi.org/10.1109/LSP.2007.914786
  10. M. Sabin and R. Gray, "Global convergence and empirical consistency of the generalized Lloyd algorithm," IEEE Trans. Information Theory, vol. 32, no. 2, pp. 148-155, 1986. https://doi.org/10.1109/TIT.1986.1057168
  11. Y. Linde, A. Buzo and R. Gray, "An Algorithm for Vector Quantization Design," Commun., IEEE Trans., vol. 28, no. 1, pp. 84-95, 1980. https://doi.org/10.1109/TCOM.1980.1094577
  12. W. B. Kleijn, A Basis for Source Coding, Course notes, KTH, Stockholm, 2008.
  13. R. Salami, C. Laflamme, J.-P. Adoul and D. Massalux, "A Toll Quality 8 Kb/s Speech Codec for the Personal Communications System (PCS)," IEEE Trans. Vehicular tech., vol. 43, no. 3, part: 1-2, pp. 808-816, Aug. 1994. https://doi.org/10.1109/25.312763