• Title/Summary/Keyword: 베타 아밀로이드

Search Result 64, Processing Time 0.026 seconds

Inhibitory potency of Acetylcholinesterase and Amyloid beta(1-42) peptide aggregation to the Extracts of Enthusiasm Reducing herbals (청열약 추출물들의 아세틸콜린에스테라제 저해와 베타아밀로이드 펩티드 응집 억제 효능)

  • Kwon, Young-Ee
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.4
    • /
    • pp.308-311
    • /
    • 2007
  • Inhibition of acetylcholinesterase and amyloid beta(1-42) peptide is good drug targets for Alzheimer's disease therapeutics. Among the twenty enthusiasm reducing herbals, the 70% methanol extracts (1 mg/ml) of Moutan Radicis Cortex and Forsythiae Fructus showed 91.5% and 85.3% about acethylcholinesterase inhibition, respectively. The extracts (1 mg/ml) of Coptidis Rhizoma and Paeoniae Radix Rubra showed more than 85% inhibition rate against amyloid beta (1-42) peptide aggregation. The neuroprotective effect of the extracts (1 mg/ml) of Moutan Radicis Cortex, Forsythiae Fructus and Paeoniae Radix Rubra showed 90.0%, 87.4% and 85.1% to compare with amyloid beta (1-42) peptide treated cells (IMR-32), respectively. Three herbs, Moutan Radicis Cortex, Forsythiae Fructus and Paeoniae Radix Rubra are promising candidates from natural products for development of Alzheimer's disease therapeutics.

A biological model research based on merging Medical-pathways (메디컬패스웨이 병합을 통한 생물학적 모델 연구)

  • Jeon, Sun-hee;Choi, Yunsoo;Seo, Dongmin;Yu, Seok Jong;Lee, Min-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.337-338
    • /
    • 2015
  • 알츠하이머병은 뇌에 비이상적으로 베타아밀로이드 단백질의 축적으로 인해 신경세포가 손상되는 질병으로 아직까지 명확한 질병의 메커니즘이 밝혀지지 않고 있다. 새로운 알츠하이머병의 생물학적 모델을 제시하기 위해, KEGG의 알츠하이머병의 신호전달패스웨이와 문헌정보를 기반으로 구축된 신호전달 네트워크를 병합함으로써 새로운 질병의 모델을 생성하였다. 분석결과 로바스타틴하부경로를 포함하는 새로운 알츠하이머 생물학적 경로 모델을 제시하고자 한다. 향후 메디컬 페스웨이의 병합기술을 통해 보다 다양한 질병의 원인 기작을 연구하는데 활용하고자 한다.

  • PDF

[ ${\beta}-Amyloid$ ] Imaging Probes (베타아밀로이드 영상용 프로브)

  • Jeong, Jae-Min
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • Imaging distribution of ${\beta}-amyloid$ plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the ${\beta}-amyloid$ plaques includes using radiolabeled peptides which can be only applied for peripheral ${\beta}-amyloid$ plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging ${\beta}-amyloid$ plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for ${\beta}-amyloid$ imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for ${\beta}-amyloid$ imaging agent.

Effect of Dropwort (Oenanthe javanica) Extracts on Memory Improvement in Alzheimer's Disease Animal Model, Tg2576 mice (알츠하이머질병 모델동물인 Tg2576 마우스를 이용한 미나리 알코올추출물의 기억력 개선 효능)

  • Won, Beom Young;Shin, Ki Young;Ha, Hyun Jee;Chang, Keun-A;Yun, Yeo Sang;Kim, Ye Ri;Park, Yong Jin;Lee, Hyung Gun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.779-784
    • /
    • 2015
  • This study was conducted to investigate the effect of herbs on memory improvement by focusing on their cholinergic functions in Tg2576 mice. Seven herbs were used to obtain extracts by using alcohol and water. In screening test for cholinergic activities of the extracts, acetylcholinesterase (AChE) activity was highly inhibited in Oenanthe javanica alcohol extract (OJAE, 18.76%) as compared with the others. The OJAE-treated Tg2576 (Tg-OJAE) groups showed the statistically significant increases of latency time in passive avoidance test. Also, it was found that the concentration of $A{\beta}1-42$ was significantly reduced in Tg-OJAE groups compared to non-treated Tg2576 groups. In the additional enzyme test, it was found that $IC_{50}$ of OJAE was $991.77{\mu}g/mL$ and OJAE acted as an uncompetitive inhibitor of AChE. Therefore, it seemed that OJAE can be used for the development of processed foods for memory improvement.

The effect of scopoletin on Aβ-induced neuroinflammatory response in microglial BV-2 cells

  • Mun, Hui-Jin;Cho, Hyun-Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.165-170
    • /
    • 2020
  • In this paper, it was confirmed that scopoletin inhibits neuroinflammation induced by amyloid beta oligomer (Aβ1-42) in microglial BV-2. The mechanisms of inflammatory cytokines and inflammatory mediators by scopoletin were identified. Alzheimer's disease is the most common neurodegenerative disease, but it is a disease whose specific etiology is unknown, and many studies are trying to solve it. We first measured the cell viability with the CCK-8 assay method to confirm that scopoletin and Aβ1-42 are toxic to BV-2 cells. Expression levels of interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor-κB (NF-κB) in inflammatory reactions induced by Aβ1-42 with western blot were analyzed. The ANOVA assay was used to compare protein expression differences between BV-2 cells treated with Aβ1-42 alone and BV-2 cells pretreated with Aβ1-42 and scopoletin. Therefore, this study suggested that scopoletin is worth developing as a neuroinflammatory protection agent for Alzheimer's disease in the future.

Characterization and β-secretase Inhibitory Activity of Water-soluble Polysaccharides Isolated from Phellinus linteus Fruiting Body (상황버섯 자실체로부터 분리된 수용성 다당류의 특성 분석 및 이의 베타 시크리타아제 활성 저해효과)

  • Jo, Hang Soo;Choi, Doo Jin;Chung, Mi Ja;Park, Jae Kweon;Park, Yong Il
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.229-234
    • /
    • 2012
  • A key molecule in the pathogenesis of Alzheimer's disease (AD) is the ${\beta}$-amyloid peptide ($A{\beta}$) generated by ${\beta}$-secretase activity, an aspartic protease. This study was designed to evaluate inhibitory effect of the high-molecular weight water-soluble polysaccharides (Et-P) isolated and purified from Phellinus linteus fruiting body on ${\beta}$-secretase activity. The Et-P was purified from the hot water extract of Phellinus linteus fruiting body mainly by 75% ethanol precipitation and DEAE-Cellulose column chromatography. From the DEAE-Cellulose chromato-gram and molecular weight analysis, the Et-P was shown to be a mixture of three polysaccharides with molecular mass of 1,629, 1,294, and 21 kDa, respectively. The monosaccharide composition of Et-P was determined to be glu-cose, galactose, and mannose as major sugars, glucose being the most prominent one (48% in mole percentage). The elemental analysis and FT-IR analysis suggested that Et-P is typical polysaccharides having at least partially ${\beta}$-linkages and possible existing as complex with phenolic compounds. The laminarinase digestion and HPAEC-PAD analysis suggested that Et-P is a variant of beta-(1,3)-glucans. The Et-P showed DPPH radical scavenging activity and, especially, a significant inhibitory activity on ${\beta}$-secreatase activity (48% inhibitin at 100 ${\mu}g/mL$), suggesting that they may inhibit the formation of $A{\beta}$ which is the major causative of Alzheimer's disease. The results of this study suggest that the water soluble polysaccharides of Phellinus linteus fruiting body can be a potent material for the development of preventive or therapeutic agents for AD.

Effects of Radicicol on the Metabolism of ${\beta}-Amyloid$ Precursor Protein in Neuroblastoma Cells (Radicicol이 신경세포에서 베타 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Leem, Jae-Yoon;Lee, Ri-Hua;Lee, Kyung-A;Gong, Du-Gyun;Choi, Bu-Jin;Lee, Choong-Soo;Eun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.264-269
    • /
    • 2007
  • Alzheimer’s disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}-amyloid $ (A ${\beta}$) peptides, which are generated by processing of amyloid precursor protein (APP). It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. A${\beta}$ peptides have been believed to be neurotoxic and now are also considered to have effects on the mechanism of memory formation. In this study, effects of radicicol on the metabolism of APP were analyzed. Radicicol inhibited the secretion of A${\beta}$ from the Neuro2a cell line (APPswe cell) expressing APPswe. Beta-site APP cleaving enzyme (BACE) fluorescence resonance energy transfer (FRET) assay revealed that it inhibited BACE activity in a dose dependently manner. Immunoblotting study showed that it inhibited intracellular heat shock protein (HSP)90 and it increased the secretion of HSP90 from the APPswe cells. We suggest that radicicol inhibits APP metabolism and Ap generation by the means of HSP90 inhibitory mechanism and partially BACE inhibitory mechanism. This is the first report that radicicol inhibits the secretion of A${\beta}$ peptides from neuroblastoma cells.

Protective Effect of PineXol® against Amyloid-β-induced Cell Death (아밀로이드 베타로 유도된 신경세포 사멸에 대한 PineXol®의 보호효과)

  • Han, Kyung-Hoon;Lee, Seung-Hee;Park, Kwang-Sung;Song, Kwan-Young;Kim, Jung-Hee;Park, Eun-Kuk;Han, Sung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1279-1285
    • /
    • 2017
  • $Amyloid-{\beta}$ protein ($A{\beta}$) is known to increase free radical production in neuronal cells, leading to cell death by oxidative stress. The purpose of this study was to evaluate the protective effects of $PineXol^{(R)}$ on $A{\beta}_{25-35}$ induced neuronal cell death. Rat pheochromocytoma (PC-12) cells were pre-treated with $100{\mu}g/mL$ of $PineXol^{(R)}$ for 2 h. The cells were exposed to single dose of $30{\mu}M$ $A{\beta}_{25-35}$ for 24 h. Cell death was assessed by a cell count kit-8 (CCK-8) assay, lactate and dehydrogenase (LDH) release assay. An Apoptotic process was analyzed by a protein expression of the Bcl-2 family using western blotting. Cell viability increased in PC-12 cells treated with both $A{\beta}_{25-35}$ and $PineXol^{(R)}$, compared to the control group. $PineXol^{(R)}$ induced a decrease of the Bcl-2 protein expression (p<0.05), while Bax and Sod1 increased (p<0.05), indicating attenuation of $A{\beta}_{25-35}$ induced apoptosis. These results suggest that $PineXol^{(R)}$ may be a good candidate for the prevention of Alzheimer's disease(AD).