아밀로이드베타로 유도된 알츠하이머성 치매 모델에서 BF-7의 보호 효과 중앙대학교 : 김도희, 김옥현, 김경용, 이원복, <u>김성수*</u> (주)바이오그랜드 BG생명의학연구소 : 이현정 서울대학교 보라매병원 : 이상형, 정희연, 이준영

The Protective Effect of BF-7 on β -amyloid-indeuced Alzheimer's Disease Model.

¹Department of Anatomy and Cell biology, College of Medicine, Chung-Ang

University, ²BG Biomedical Research Center, Biogrand Inc., ³Department of

Neurosurgery, ⁴Department of Neuropsychiatry, College of Medicine, Seoul National

University

Do-Hee Kim¹, Ok Hyeon Lee¹, Hyun Jung Lee², Sang Hyung Lee³, Hee Yeon Jung⁴, Jun Young Lee⁴, Kyung Yong Kim¹, Won Bok Lee¹, and <u>Sung Su Kim^{1,*}</u>

Objectives

BF-7, *Bombyx mori* extracts, is known to have cell protective effect against various insults. But so far, the protective mechanism is largely unknown. We determined whether BF-7 protected against β -amyloid induced neurotoxicity and learning impairment in vivo models.

Materials and Methods

<u>A</u> β fibril preparation Peptides corresponding to amino acids 1–42 of human A β protein were purchased from BioSource (Camarillo, CA, USA). To fibrillize, A β peptides were resuspended in sterile dH₂O (final concentration, 9 mg/ml) followed by incubation for 24 h at 37 °C.

<u>Animal and Surgical Procedure</u> Young adult male ICR mice were caged individually at least 1 week prior to the start of the experiments and kept on a normal laboratory diet and tap water ad libitum in an air-conditioned room $(21 \pm 2^{\circ}C)$ with a 12-h light cylcle. The animals were anethetized intraperitoneally (i.p) with ketamine and mounted in a stereotaxic frame. All efforts were made to minimize animal suffering throughout the experiments. The administration of A β was performed as followed. Briefly, each mouse was injected at the bregma with a 50 $\mu\ell$ Hamilton microsyringe fitted with a 26-gauge needle that was inserted to a depth of 2.2mm. The ingection volume was 5 $\mu\ell$.

주저자 연락처 (Corresponding author) : 김성수 E-mail : sungsu@cau.ac.kr Tel : 02-820-5641

<u>Passive Avoidance performance</u> On day 7 after $A\beta$ injection, mice were trained on a one-trial step-through passive avoidance task. The passive avoidance box was divided into two compartments, one illuminated and one dark, equipped with a grid floor. During the training trial, each mouse was placed in the lighted compartment; as soon as it entered the dark compartment, the door was closed and the mouse received and inescapable shock (0.1 mA, 3s). In the testing trial, given 1 day after the training trial, the mouse was again placed in the lighted compartment and the time until it re-entered the dark compartment was measeured (the step-through latency maximum tesing limit was 90 s).

Immunohistochemistry and Histochemistry On day 14 after A β injection, animals were anethetized with ketamine and perfused transcardially with 4% paraformaldehyde (0.1 M phosphate buffer, pH.7.4). The dissected brains were cryoprotected in PBS containing 20% sucrose for 1 day,, coronary cut into consecutive 40 μ m sections with a freezing microtome. The sections were stained with cresyl violet, which stains the Nissl bodies in the perikarya (Nissl staining). Assessment of apoptosis in the hippocampus by A β was carried out using ApopTag, Apoptosis detection kit.

Results

The results may be summarized as follows:

- 1. A β induces neuronal cell death both in vitro and in vivo.
- 2. BF-7 attenuates loss of learning and memory function induced by Ab.
- 3. BF-7 prevents increase of bax and decrease of bcl-xl in hippocampus, thus elevates neuronal survival in mice.
- 4. BF-7 inhibits caspase activity and neuronal cell death although couldn't diminish mitochondrial malfunction in vitro system. This result suggests that BF-7 inhibits the decrease of bcl-xl, which prevents the conformational change of bax.