• Title/Summary/Keyword: 배관 진동

Search Result 274, Processing Time 0.025 seconds

Vibration Analysis of Compressor and Pipe Using RecurDyn (RecurDyn 을 이용한 압축기 및 배관 진동 해석)

  • Kwon, Seungmin;Son, Youngboo;Ha, Jonghun;Yoo, Hong Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Recently, noise reduction in room air conditioner has been one of the most important issues as well as cooling efficiency. A rotary compressor is widely used in room air conditioners. But, the rotary compressor is the dominant vibration/noise source in an air conditioner. A number of studies have been conducted on reducing rotary compressor vibration/noise through improving muffler and resonator design. However, a noise delivering path between compressor and pipe is not fully taken into consideration. In this paper, the vibration analysis model of rotary compressor is modeled using RecurDyn and experimental validation is presented.

Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix (전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석)

  • 이영신;천일환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.366-375
    • /
    • 1991
  • In this study, vibrational behavior of uniform pipe carrying a moving medium is studied by using a transfer matrix and the displacement function derived from the conventional beam theory. In various boundary conditions, flow velocity and mechanical property change of the variation of natural frequency are investigated. The Coriolis term in the original differential equation of motion has been ignored in the investigation. This method is used to study the variation of natural frequency with flow velocity for clamped-clamped, cantilevered, clamped-pinned, pinned-pinned, free-free straight pipe element. It is shown that clamped-clamped, free-free pipe have the highest natural frequency and critical velocity values while cantilevered pipe have the smallest natural frequency for the same mechanical properties. From the vibration effects of mechanical property variation, it is shown that bending stiffness and pipe length variation has large influence on natural frequency and critical velocity. Since the order of transfer matrix is not changed with boundary conditions of pipe element, this method proposed can be easily applied to personal-computer for vibration analysis of pipe element. Furthermore, this method can be extended to three-dimensional system by using a coordinate transformation for the analysis of piping systems.

A Study on the of influence to precision equipment by utility vibration of TFT-LCD fab (TFT-LCD 생산공장의 유틸리티 진동으로 인한 공장 구조물과 정밀장비로의 영향성)

  • Park, Hae-Dong;Im, Jung-Bin;Ryu, Kuk-Hyun;Baek, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.886-892
    • /
    • 2006
  • 반도체 및 TFT-LCD등을 생산하는 공장 구조물에는 C/R이 있으며, 여기에는 외부 진동에 엄격한 특성을 갖고 있는 각종 수 많은 정밀장비가 설치되어 있다. 더구나, 이러한 정밀장비등의 정상운용을 위하여 각종 UT(유틸리티)등이 병행하여 C/R내 산재해 설치되어 있다. 이러한 UT는 정밀장비와 각종 배관들로 연결되어 설치되어 있다. 또한 C/R의 항온/항습등을 유지하기 위하여 공조등 부대 유틸리티도 또한 설치되어 있으며, 이러한 각종 유틸리티는 진동은 유발하는 진동원이 되며, 여기서 발생하는 진동은 C/R의 진동환경을 열악하게 만들 수 있다. 이에, 본 연구에서는 TFT-LCD 생산 공장에서 UT와 배관등에서 발생하는 진동이 공장 구조물(격자보)와 공진현상을 일으켜 인접하여 설치 된 정밀장비에 악영향을 끼치고 있음을 현장 진동 측정과 구조물 동적 해석을 통하여 확인하였고, 제안한 저감대책을 수행 후 진동 영향성의 감소됨을 확인하였다.

  • PDF

Reduction of Transient Vibration on $H_2$ Piping System for Generator Cooling in a Power Plant (화력발전소 발전기 냉각용 수소배관계 과도진동 개선)

  • Yang, Kyeong-Hyeon;Kim, Sung-Hwi;Cho, Chul-Whan;Bae, Chun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.588-592
    • /
    • 2002
  • There was the transient vibration on $H_2$ piping system for cooling the generator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and exciting force from the turbine rotor by measurement and simulation test. We verified it would be changed the mode shape of the piping system by several simulation test for the structural modification of the piping system. Therefore we concluded that the change of natural vibration mode depends on deeply changing effective length of pipe and reducing supports.

  • PDF

A Study on Mathematical Modeling of Forcing Function for the Piping Vibration of Petrochemical Plant Design (플랜트 설계 시 배관진동을 유발하는 가진 함수의 수학적 모델링)

  • 민선규;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.591-595
    • /
    • 1997
  • In analysis of piping vibration of petrochemical plant, the forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used for the system with rotary equipments. Mechanical driving frequencies, wave functions, and response spectrum are used for reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, for the spray injection case inside the pipe, forcing function was modeled, in which two different fluids are distributed uniformly. To confirm the results, the scheme used for the forcing function was applied for real piping system. The vibration mode of the real system was consistent with the 4th mode obtained by simulation using the forcing function formulated in this study.

  • PDF

Proposition of copper-foil magnetic sensor for the two-axis remote measurement of bending vibration of a non-metallic cylinder (비금속 배관에서의 원격 2 축 굽힘 진동 측정을 위한 동박 패치형 자기 센서의 제안)

  • Kim, Jin-Ki;Han, Soon-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.322-325
    • /
    • 2007
  • This paper suggests a non-contact sensor for measuring bending vibration of a non-metallic cylinder in two orthogonal directions simultaneously. Recent research shows that a solenoid can pick up bending vibrations of a nonmetallic cylinder based on the reversed Lorentz force mechanism if an electrical conductive patch is attached to the cylinder. In this work, pairs of specially designed patches are used to make two independent paths for the current induced by bending vibrations, which enables the measurement of bending vibrations along two orthogonal directions simultaneously. The working performance of the developed sensor was verified by using two accelerometers.

  • PDF

Mount design to reduce the vibration of pipe system conveying fluid (유체를 운반하는 배관계의 진동 저감을 위한 마운트 설계)

  • Lee, Seong-Hyeon;Jeong, Weui-Bong;Jeong, Cheol-Ung;Ham, Il-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1437-1441
    • /
    • 2007
  • This paper formulates the finite element model is formulated taking into consideration of the effects of the fluid flow in a pipe. The characteristic of vibration is presented using mass, damping and stiffness matrix in the finite element equation of this pipe system. The displacement distribution of pipe system caused by fluid force is discussed. The variation of vibration of a pipe system according the change of mount stiffness is discussed.

  • PDF

A study on the Prediction of the Radiated Noise by Fluid Induced Vibration in the pipe (배관의 표면진동을 이용한 소음예측기법 연구)

  • Yi, Jongju;Pak, Kyunghyon;Jung, Woojin;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.609-614
    • /
    • 2014
  • This study is on the experiment of the pipe noise due to the internal fluid. The straight pipe, the $90^{\circ}$ mitred pipe, rounded $90^{\circ}$ and $1350^{\circ}$ pipe were tested and measured the vibration and noise. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The $90^{\circ}$ mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the use of pipe surface vibration and radiation efficiency shows good agreement with experiment result.

  • PDF