• Title/Summary/Keyword: 방하중

Search Result 56, Processing Time 0.023 seconds

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.

Method for Determining Thickness of Rubber Fenders of a Tripod Type Offshore Wind Turbine Substructure (해상풍력 삼각지주형 하부구조물의 충격손상방지용 고무펜더의 두께결정 방법)

  • Lee, Kang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.490-496
    • /
    • 2012
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in offshore wind turbine on impact of barge. The collision between offshore wind turbine and barge is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all effects and sequences during the collision. On applying the impact force of a barge to the offshore wind turbine, the maximum acceleration, internal energy, and plastic strain are calculated for each load case using the finite element method. A parametric study is conducted with the experimental data in terms of the velocity of barge, thickness of the offshore wind turbine, and thickness and Mooney-Rivlin coefficient of the rubber fender. Through the analysis proposed in this study, it is possible to determine the proper size and material properties of the rubber fender and the optimal moving conditions of barge.

An experimental study on the improvement of tunnel drainage system using a geogrid composite (지오그리드 복합 배수재를 이용한 터널 배수성능 개선에 관한 실험적 연구)

  • Lee, Jun S.;Choi, Il-yoon;Lim, Jihoon;Yoon, Suk Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • A new testing equipment is designed to investigate the characteristics of the drainage fabric which is used in the tunnel drain system. The equipment is possible to model the loading as well as boundary conditions of the shotcrete precisely and it follows the general guideline of ASTM D4716 so that the interface between shotcrete and concrete lining retains the real situation in the tunnel site. Using the real loading conditions and surface irregularities, the flow rate and its capacity of the regular fabric has been estimated. A composite drainage fabric having geogrid inside was also used to investigate the flow rate and its efficiency. The advantages of the composite fabric compared with the regular one have been demonstrated using the experimental data and brief outline of the future work is finally proposed.

Development of Inversion Analysis Framework to Determine Nonlinear Shear Moduli of Soils In Situ (현장시험을 통해 지반의 비선형 전단탄성계수를 산정하기 위한 역해석방법의 개발)

  • Ahn, Jae-Hun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • The large scale shaker can be employed to measure linear and nonlinear shear moduli of soils in situ as a function of shear strain. The method involves applying dynamic loads on a surface foundation measuring the dynamic response of the soil mass beneath the foundation with embedded instrumentation. This paper focuses on the development of a framework of the inverse analysis for the interpretation of test data to estimate linear and nonlinear shear moduli of soils along with the necessity of the inverse analysis. The suggested framework is based on the nonlinear least squares but it uses two iterative loops to account for the nonlinear behavior of soil that sensors are not located. The validity of the suggested inversion framework is tested through a series of numerical parametric studies. An example use of the suggested inversion framework is also shown. Because the field condition may affect the accuracy of suggested method, it is important to conduct a preliminary inverse analysis to quantify the discrepancy between the estimated modulus and the baseline.

Seismic Fragility Evaluation of Surface Facility Structures in Intermediate-Low Level Radioactive Waste Repository (중.저준위 방사성폐기물 처분장의 지상시설에 대한 지진 취약도 평가)

  • Park, Jun-Hee;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Since a seismic exceeding design load can result in exposing radioactive material during disposal process of radioactive wastes, the repository should be designed with enough seismic margin. In this paper, a seismic fragility analysis was performed to evaluate the seismic capacity of surface facility structures. According to the analysis results, since inspection & store facility and radioactive waste facility have a rectangle geometry, the seismic capacity was differently presented about 23%~43% according to the axis of structures. The HCLPF capacity of inspection & store facility and radioactive waste facility was 0.52g and 0.93g, respectively. And it was observed that seismic capacity of radioactive waste facility was similar to that of a containment for nuclear power plants.

Study of apartment plan technology adopting structural element of Hanok (공동주택에 적용 가능한 한옥 평면기술에 관한 연구)

  • Park, Kyung Hyun;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6366-6371
    • /
    • 2014
  • This study examined the structural elements of Korean-style houses (Hanok) and proposed formula accounting for their similar patterns and regular behavior. The design of modern apartment buildings adopts many aesthetic elements from Hanok but those are only for interior decoration. In this study, the projected Hanok eaves were examined in terms of the length of solar insolation. Leaning pillars toward the inside of the building were analyzed in detail not only for the front and back pillar, side pillar, but also the corner pillar. This study also suggested a design element from the Hanok structure, such as the elevated balcony, porch flooring, and inner garden in porch area. In addition, the new apartment plan improved air circulation, ventilation and natural lighting.

A Study of Dynamic Behavior of Track and Train Interaction on Rail Open Gap (레일 개구부에서의 궤도-차량 상호작용에 대한 연구)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu;Cho, Sun Kyu;Han, Sang Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.345-355
    • /
    • 2007
  • During winter, the CWR (continuous welded rail) may be broken when a temperature drop below the neutral level changes the axial force, causing tensile fracture and creating a rail gap. The passage of a train on a rail with an open gap may lead to very costly derailments. In this paper, the use of a track-and-train-coupled model whose rail has an open gap is proposed for dynamic interaction analysis. Linear track and train systems were coupled in this study by a nonlinear Herzian contact spring, and the complete system matrices of the total track-train system were constructed. Moreover, the interaction phenomenon considering the presence of an open gap in the rail was toughly defined by assigning the irregularity functions between the two sides of the gap. Time history analysis, which has an iteration scheme such as the Newmark-$\beta$ method (based on the Modified Newton-Raphson methods), was conducted to solve the nonlinear equation. .Finally, numerical studies were conducted to assess the effect of the various parameters of the system when applied to various speeds, open-gap sizes, and support stiffnesses of the rail.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Photoelastic stress analysis of the mandibular unilateral free-end removable partial dentures according to the design (하악 편측 유리단 가철성 국소의치의 설계에 따른 광탄성 응력 분석)

  • Park, Cheol-Woo;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.206-214
    • /
    • 2009
  • Statement of problem: There are common clinical cases in which the mandibular first and second molars are missing unilaterally. Purpose: This study was designed to compare and evaluate the magnitude and distribution of stress produced by four kinds of mandibular unilateral free-end removable partial dentures that could be applied clinically in Kennedy class II cases. Material and methods: Four unilateral free-end removable partial dentures using clasp, Konus crown, resilient attachment, and flexible resin were fabricated on the photoelastic models of the Kennedy class II cases. The vertical load of 6㎏ was applied on the central fossa of the first molar of every removable partial denture in the stress freezing furnace and the photoelastic models were frozen according to the stress freezing cycle. After these models were sliced mesio-distally to a thickness of 6mm, the photoelastic isochromatic white and black lines of the sliced specimens were examined with the transparent photoelastic experiment device and photographs were taken with a digital camera. The fringe order numbers at eight measuring points in the photograph were measured with the naked eye. Results: The maximum fringe order number of each sliced specimen and the fringe order number at the residual ridge just below the loading point were in the decreasing order of the unilateral removable partial dentures using flexible resin followed by clasp, resilient attachment, and Konus crown. The fringe order number at the root apex of the second premolar was in the decreasing order of the unilateral removable partial dentures using clasp followed by flexible resin, Konus crown, and resilient attachment. Conclusion: The removable partial denture using Konus crown showed the most equalized stress distribution to the supporting alveolar bone of abutment teeth and residual ridge under the vertical loads. The removable partial denture using flexible resin can be applied to the case that has a better state of residual ridge than abutment teeth.

Modelling of Principal Stress Rotation in Ko Consolidated Clay (Ko-압밀점토지반속 주응력회전 현상의 모형화)

  • Hong, Won-Pyo;Kim, Tae-Hyeong;Lee, Jae-Ho
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • The isotropic single-hardening constitutive model has been applied to predict the behavior of soils during reorientation of principal stresses in the field. The predicted response by the model agrees well with the measured behavior for a series of torsion shear tests performed on hollow cylinder specimens of Ko consoildated clay along various stress -paths. This indicates that the soil behavior during reorientation of principal stresses can be predicted by using the model with application of simple informations given by isotropic compression tests and conventional consolidated-undxained triaxial compression tests. Isotropic elasto-plastic soil behavior has been served during primary loading from both the torsion shear tests and the predictions by the model. However, the directions of maj or principal strain increment given by the model have not coincided with the directions for tests during stress reversal, such as unloading and reloading, within isotropic yield surface for Ko consolidated stress. This indicates that kinematic hardening model instead of isotropic hardening model should be developed to predict the soil behavior during stress reversal. The experimental strain increment vectors in the work-space have been compared with the directions expected for associated and nonassociated flow rules.

  • PDF