• Title/Summary/Keyword: 방전 용량

Search Result 574, Processing Time 0.022 seconds

The Effect of Additives on the Performance of Aqueous Organic Redox Flow Battery Using Quinoxaline and Ferrocyanide Redox Couple (수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과)

  • Chu, Cheonho;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.847-852
    • /
    • 2019
  • In this study, the effect of additives on the performance of aqueous organic redox flow battery (AORFB) using quinoxaline and ferrocyanide as active materials in alkaline supporting electrolyte is investigated. Quinoxaline shows the lowest redox potential (-0.97 V) in KOH supporting electrolyte, while when quinoxaline and ferrocyanide are used as the target active materials, the cell voltage of this redox combination is 1.3 V. When the single cell tests of AORFBs using 0.1 M active materials in 1 M KCl supporting electrolyte and Nafion 117 membrane are implemented, it does not work properly because of the side reaction of quinoxaline. To reduce or prevent the side reaction of quinoxaline, the two types of additives are considered. They are the potassium sulfate as electrophile additive and potassium iodide as nucleophilie additive. Of them, when the single cell tests of AORFBs using potassium iodide as additive dissolved in quinoxaline solution are performed, the capacity loss rate is reduced to $0.21Ah{\cdot}L^{-1}per\;cycle$ and it is better than that of the single cell test of AORFB operated without additive ($0.29Ah{\cdot}L^{-1}per\;cycle$).

Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor (회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.901-908
    • /
    • 2018
  • Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.

A Study on the Electrochemical Performance of Fe-V Chloric/Sulfuric Mixed Acid Redox Flow Battery Depending on Electrode Activation Temperature (Fe-V Chloric/Sulfuric Mixed Acid 레독스흐름전지 전극의 활성화 온도에 따른 전기화학적 성능 고찰)

  • Lee, Han Eol;Kim, Dae Eop;Kim, Cheol Joong;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.639-645
    • /
    • 2020
  • Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidwas used as a supporting electrolyte in RFB system with Fe2+/Fe3+ and V2+/V3+ as redox couple. The optimum electrode and activation temperature were suggested by comparing the capacity, coulombic efficiency and energy efficiency according to the electrode type and activation temperature. In the RFB single cell evaluation using 5 types of carbon electrodes used in the experiments, all of them showed close to the theoretical capacity to retain the reliability of the evaluation results. GFD4EA showed relatively excellent energy efficiency and charge/discharge capacity. In order to investigate the electrochemical performance according to the activation temperature, GFD4EA electrode was activated by heat treatment at different temperatures of 400, 450, 500, 600 and 700 ℃ under an air atmosphere. Changes in physical properties before and after the activation were observed using electrode mass retention, scanning electron microscope (SEM), XPS analysis, and electrochemical performance was compared by conducting RFB single evaluation using electrodes activated at each temperature given above.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery (리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성)

  • Eun Bi Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.32-38
    • /
    • 2023
  • In this study, the electrochemical properties of dopamine coated silicon/silicon carbide/carbon(Si/SiC/C) composite materials were investigated to improve cycle stability and rate performance of silicon-based anode active material for lithium-ion batteries. After synthesizing CTAB/SiO2 using the Stöber method, the Si/SiC composites were prepared through the magnesium thermal reduction method with NaCl as heat absorbent. Then, carbon coated Si/SiC anode materials were synthesized through polymerization of dopamine. The physical properties of the prepared Si/SiC/C anode materials were analyzed by SEM, TEM, XRD and BET. Also the electrochemical performance were investigated by cycle stability, rate performance, cyclic voltammetry and EIS test of lithium-ion batteries in 1 M LiPF6 (EC: DEC = 1:1 vol%) electrolyte. The prepared 1-Si/SiC showed a discharge capacity of 633 mAh/g and 1-Si/SiC/C had a discharge capacity of 877 mAh/g at 0.1 C after 100 cycles. Therefore, it was confirmed that cycle stability was improved through dopamine coating. In addition, the anode materials were obtain a high capacity of 576 mAh/g at 5 C and a capacity recovery of 99.9% at 0.1 C/0.1 C.

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.

Characterization of manganese oxide supercapacitors using carbon cloth (Carbon Cloth을 이용한 이산화망간 슈퍼커패시터 특성 연구)

  • Lee, Seung Jin;Kim, Chihoon;Ji, Taeksoo
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1199-1205
    • /
    • 2017
  • Global energy consumption is rapidly increasing yearly due to drastic industrial advances, requiring the development of new energy storage devices. For this reason, supercapacitors with fast charge-discharge, long life cycle and high power density is getting attention, and have been considered as one of the potential energy storage systems. In this research, we developed a supercapacitor that consists of amorphous manganese oxide($MnO_2$) electrodes deposited onto carbon cloth substrates using the hydrothermal method. The Fe-doped amorphous $MnO_2$ samples were characterized by X-ray diffraction(XRD), Energy Dispersive X-ray spectroscopy(EDX), as well as scanning electron microscopy(SEM). The electrochemical analysis of the prepared samples were performed using cyclic voltammetry and galvanostatic charge-discharge measurements in 1M $Na_2SO_4$ electrolyte. The test results demonstrate that the supercapacitor based on the Fe-doped amorphous $MnO_2$ electrodes has a specific capacitance as high as 163F/g at 1A/g current density, and good cycling stability of 87.34% capacitance retention up to 1000 cycles.

Development of Battery Management System for Electric Vehicle Applications of Ni/MH Battery

  • Jung Do Yang;Lee Baek Haeng;Kim Sun Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.152-159
    • /
    • 2001
  • Electric vehicle performance is very dependent on traction batteries. For developing the electric vehicles with high performance and good reliability, the traction batteries have to be managed to get maximum performance under various operating conditions. The enhancement of the battery performance can be accomplished by implementing battery management system (BMS) that plays important roles of optimizing the control mechanism of charge and discharge of the batteries as well as monitoring battery status. In this study the battery management system has been developed for maximizing the use of Ni/MH batteries in electric vehicle. This system provides several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state of charge, safety and thermal management. The BMS was installed in and tested using the DEV5-5 electric vehicle developed by Daewoo Motor Co. and Institute for Advanced Engineering in Korea. The 18 modules of Panasonic Ni/MH battery, 12 V-95 Ah, were used in the DEV5-5. The high accuracy within the range of $3\%$ and the good reliability were shown in the test results. The BMS can also improve the performance and cycle life of Ni/MH battery pack as well as the reliability and safety of the electric vehicles (EV).

Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method (착체중합법을 이용한 LiMn1.5Ni0.5O4 분말합성 및 특성평가)

  • Sin, Jae-Ho;Kim, Jin-Ho;Hwang, Hae-Jin;Kim, Ung-Soo;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.194-199
    • /
    • 2012
  • The $LiMn_{1.5}Ni_{0.5}O_4$, substituting a part of Mn with Ni in the $LiMn_2O_4$, the spinel structure has good charge-discharge cycle stability and high discharge capacity at 4.7 V. In this study $LiMn_{1.5}Ni_{0.5}O_4$ powders were synthesized by polymerization complex method. The effect on the characteristics of synthesized $LiMn_{1.5}Ni_{0.5}O_4$ powders was studied with citric acid (CA) : metal ion (ME) molar ratio (5 : 1, 10 : 1, 15 : 1, 30 : 1) and calcination temperature ($500{\sim}900^{\circ}C$). Single phase of $LiMn_{1.5}Ni_{0.5}O_4$ was observed from XRD analysis on the powders calcined at low ($500^{\circ}C$) and high temperatures ($900^{\circ}C$). The crystalline size and crystallinity increased with calcination temperature. At low calcination temperature the particle size decreased and specific surface area increased as the CA molar ratio increased. On the other hand, high particle growth rate at high calcination temperature interfered the particle size reduction and specific surface area increase induced by the increase of CA molar ratio.